FeaturedPosted on Categories Administrativia, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, StatisticsTags , , , , Leave a comment on Starting With Data Science: A Rigorous Hands-On Introduction to Data Science for Software Engineers

Starting With Data Science: A Rigorous Hands-On Introduction to Data Science for Software Engineers

Starting With Data Science

A rigorous hands-on introduction to data science for software engineers.

Win Vector LLC is now offering a 4 day on-site intensive data science course. The course targets software engineers familiar with Python and introduces them to the basics of current data science practice. This is designed as an interactive in-person (not remote or video) course.

Continue reading Starting With Data Science: A Rigorous Hands-On Introduction to Data Science for Software Engineers

FeaturedPosted on Categories Opinion, Practical Data Science, StatisticsTags , 2 Comments on Practical Data Science with R2

Practical Data Science with R2

The secret is out: Nina Zumel and I are busy working on Practical Data Science with R2, the second edition of our best selling book on learning data science using the R language.

Our publisher, Manning, has a great slide deck describing the book (and a discount code!!!) here:

Pdsr2s

We also just got back our part-1 technical review for the new book. Here is a quote from the technical review we are particularly proud of:

The dot notation for base R and the dplyr package did make me stand up and think. Certain things suddenly made sense.

Continue reading Practical Data Science with R2

Posted on Categories Administrativia, Pragmatic Data ScienceTags , Leave a comment on Practical Data Science with R, half off sale!

Practical Data Science with R, half off sale!

Our publisher, Manning, is running a Memorial Day sale this weekend (May 24-27, 2019), with a new offer every day.

  • Fri: Half off all eBooks
  • Sat: Half off all MEAPs
  • Sun: Half off all pBooks and liveVideos
  • Mon: Half off everything

The discount code is: wm052419au.

Many great opportunities to get Practical Data Science with R 2nd Edition at a discount!!!

Posted on Categories Mathematics, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , , Leave a comment on Free Video Lecture: Vectors for Programmers and Data Scientists

Free Video Lecture: Vectors for Programmers and Data Scientists

We have just released two new free video lectures on vectors from a programmer’s point of view. I am experimenting with what ideas do programmers find interesting about vectors, what concepts do they consider safe starting points, and how to condense and present the material.

Please check the lectures out.

NewImage

Posted on Categories Opinion, Pragmatic Data Science, TutorialsTags , Leave a comment on Timing Working With a Row or a Column from a data.frame

Timing Working With a Row or a Column from a data.frame

In this note we share a quick study timing how long it takes to perform some simple data manipulation tasks with R data.frames.

We are interested in the time needed to select a column, alter a column, or select a row. Knowing what is fast and what is slow is critical in planning code, so here we examine some common simple cases. It is often impractical to port large applications between different work-paradigms, so we use porting small tasks as approximate stand-ins for measuring porting whole systems.

We tend to work with medium size data (hundreds of columns and millions of rows in memory), so that is the scale we simulate and study.

Continue reading Timing Working With a Row or a Column from a data.frame

Posted on Categories data science, Exciting Techniques, Practical Data Science, Pragmatic Data Science, TutorialsTags , , Leave a comment on Data Layout Exercises

Data Layout Exercises

John Mount, Nina Zumel; Win-Vector LLC 2019-04-27

In this note we will use five real life examples to demonstrate data layout transforms using the cdata R package. The examples for this note are all demo-examples from tidyr:demo/ (current when we shared this note on 2019-04-27, removed 2019-04-28), and are mostly based on questions posted to StackOverflow. They represent a good cross-section of data layout problems, so they are a good set of examples or exercises to work through.

Continue reading Data Layout Exercises

Posted on Categories Administrativia, Practical Data ScienceTags , , Leave a comment on Practical Data Science with R Book Update (April 2019)

Practical Data Science with R Book Update (April 2019)

I thought I would give a personal update on our book: Practical Data Science with R 2nd edition; Zumel, Mount; Manning 2019.

Continue reading Practical Data Science with R Book Update (April 2019)

Posted on Categories Coding, Practical Data Science, Pragmatic Data Science, TutorialsTags , , 4 Comments on Controlling Data Layout With cdata

Controlling Data Layout With cdata

Here is an example how easy it is to use cdata to re-layout your data.

Tim Morris recently tweeted the following problem (corrected).

Please will you take pity on me #rstats folks?
I only want to reshape two variables x & y from wide to long!

Starting with:
    d xa xb ya yb
    1  1  3  6  8
    2  2  4  7  9

How can I get to:
    id t x y
    1  a 1 6
    1  b 3 8
    2  a 2 7
    2  b 4 9
    
In Stata it's:
 . reshape long x y, i(id) j(t) string
In R, it's:
 . an hour of cursing followed by a desperate tweet 👆

Thanks for any help!

PS – I can make reshape() or gather() work when I have just x or just y.

This is not to make fun of Tim Morris: the above should be easy. Using diagrams and slowing down the data transform into small steps makes the process very easy.

Continue reading Controlling Data Layout With cdata

Posted on Categories Programming, TutorialsTags , , , Leave a comment on Piping is Method Chaining

Piping is Method Chaining

What R users now call piping, popularized by Stefan Milton Bache and Hadley Wickham, is inline function application (this is notationally similar to, but distinct from the powerful interprocess communication and concurrency tool introduced to Unix by Douglas McIlroy in 1973). In object oriented languages this sort of notation for function application has been called “method chaining” since the days of Smalltalk (~1972). Let’s take a look at method chaining in Python, in terms of pipe notation.

Continue reading Piping is Method Chaining