Posted on Categories math programming, Pragmatic Machine Learning, Statistics, TutorialsTags , , , , , 2 Comments on Why do Decision Trees Work?

Why do Decision Trees Work?

In this article we will discuss the machine learning method called “decision trees”, moving quickly over the usual “how decision trees work” and spending time on “why decision trees work.” We will write from a computational learning theory perspective, and hope this helps make both decision trees and computational learning theory more comprehensible. The goal of this article is to set up terminology so we can state in one or two sentences why decision trees tend to work well in practice.

Continue reading Why do Decision Trees Work?

Posted on Categories data science, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , , , , , , 3 Comments on A Theory of Nested Cross Simulation

A Theory of Nested Cross Simulation

[Reader’s Note. Some of our articles are applied and some of our articles are more theoretical. The following article is more theoretical, and requires fairly formal notation to even work through. However, it should be of interest as it touches on some of the fine points of cross-validation that are quite hard to perceive or discuss without the notational framework. We thought about including some “simplifying explanatory diagrams” but so many entities are being introduced and manipulated by the processes we are describing we found equation notation to be in fact cleaner than the diagrams we attempted and rejected.]

Please consider either of the following common predictive modeling tasks:

  • Picking hyper-parameters, fitting a model, and then evaluating the model.
  • Variable preparation/pruning, fitting a model, and then evaluating the model.

In each case you are building a pipeline where “y-aware” (or outcome aware) choices and transformations made at each stage affect later stages. This can introduce undesirable nested model bias and over-fitting.

Our current standard advice to avoid nested model bias is either:

  • Split your data into 3 or more disjoint pieces, such as separate variable preparation/pruning, model fitting, and model evaluation.
  • Reserve a test-set for evaluation and use “simulated out of sample data” or “cross-frame”/“cross simulation” techniques to simulate dividing data among the first two model construction stages.

The first practice is simple and computationally efficient, but statistically inefficient. This may not matter if you have a lot of data, as in “big data”. The second procedure is more statistically efficient, but is also more complicated and has some computational cost. For convenience the cross simulation method is supplied as a ready to go procedure in our R data cleaning and preparation package vtreat.

What would it look like if we insisted on using cross simulation or simulated out of sample techniques for all three (or more) stages? Please read on to find out.

CleanAllTheThings

Hyperbole and a Half copyright Allie Brosh (use allowed in some situations with attribution)