Posted on Categories Opinion, ProgrammingTags , , , , , , , Leave a comment on How to use rquery with Apache Spark on Databricks

How to use rquery with Apache Spark on Databricks

A big thank you to Databricks for working with us and sharing:

rquery: Practical Big Data Transforms for R-Spark Users
How to use rquery with Apache Spark on Databricks

NewImage

rquery on Databricks is a great data science tool.

Posted on Categories Administrativia, data science, Opinion, Practical Data Science, StatisticsTags , , , , Leave a comment on John Mount speaking on rquery and rqdatatable

John Mount speaking on rquery and rqdatatable

rquery and rqdatatable are new R packages for data wrangling; either at scale (in databases, or big data systems such as Apache Spark), or in-memory. The packages speed up both execution (through optimizations) and development (though a good mental model and up-front error checking) for data wrangling tasks.


Rquery
Rqdatatable

Win-Vector LLC‘s John Mount will be speaking on the rquery and rqdatatable packages at the The East Bay R Language Beginners Group Tuesday, August 7, 2018 (Oakland, CA).

Continue reading John Mount speaking on rquery and rqdatatable

Posted on Categories data science, ProgrammingTags , , , , , , 11 Comments on Speed up your R Work

Speed up your R Work

Introduction

In this note we will show how to speed up work in R by partitioning data and process-level parallelization. We will show the technique with three different R packages: rqdatatable, data.table, and dplyr. The methods shown will also work with base-R and other packages.

For each of the above packages we speed up work by using wrapr::execute_parallel which in turn uses wrapr::partition_tables to partition un-related data.frame rows and then distributes them to different processors to be executed. rqdatatable::ex_data_table_parallel conveniently bundles all of these steps together when working with rquery pipelines.

The partitioning is specified by the user preparing a grouping column that tells the system which sets of rows must be kept together in a correct calculation. We are going to try to demonstrate everything with simple code examples, and minimal discussion.

Continue reading Speed up your R Work

Posted on Categories data science, Opinion, Programming, TutorialsTags , , , , , , , , 4 Comments on seplyr 0.5.8 Now Available on CRAN

seplyr 0.5.8 Now Available on CRAN

We are pleased to announce that seplyr version 0.5.8 is now available on CRAN.

seplyr is an R package that provides a thin wrapper around elements of the dplyr package and (now with version 0.5.8) the tidyr package. The intent is to give the part time R user the ability to easily program over functions from the popular dplyr and tidyr packages. Our assumption is always that a data scientist most often comes to R to work with data, not to tinker with the programming language itself.

Continue reading seplyr 0.5.8 Now Available on CRAN