All posts by John Mount

What is new in the vtreat library?

The Win-Vector LLC vtreat library is a library we supply (under a GPL license) for automating the simple domain independent part of variable cleaning an preparation.

The idea is you supply (in R) an example general data.frame to vtreat’s designTreatmentsC method (for single-class categorical targets) or designTreatmentsN method (for numeric targets) and vtreat returns a data structure that can be used to prepare data frames for training and scoring. A vtreat-prepared data frame is nice in the sense:

  • All result columns are numeric.
  • No odd type columns (dates, lists, matrices, and so on) are present.
  • No columns have NA, NaN, +-infinity.
  • Categorical variables are expanded into multiple indicator columns with all levels present which is a good encoding if you are using any sort of regularization in your modeling technique.
  • No rare indicators are encoded (limiting the number of indicators on the translated data.frame).
  • Categorical variables are also impact coded, so even categorical variables with very many levels (like zip-codes) can be safely used in models.
  • Novel levels (levels not seen during design/train phase) do not cause NA or errors.

The idea is vtreat automates a number of standard inspection and preparation steps that are common to all predictive analytic projects. This leaves the data scientist more time to work on important domain specific steps. vtreat also leaves as much of variable selection to the down-stream modeling software. The goal of vtreat is to reliably (and repeatably) generate a data.frame that is safe to work with.

This note explains a few things that are new in the vtreat library. Continue reading What is new in the vtreat library?

I still think you can manufacture an unfair coin

In Gelman and Nolan’s paper “You Can Load a Die, But You Can’t Bias a Coin” The American Statistician, November 2002, Vol. 56, No. 4 it is argued you can’t easily produce a coin that is biased when flipped (and caught). A number of variations that can be easily biased (such as spinning) are also discussed.

Obviously Gelman and Nolan are smart and careful people. And we are discussing a well-regarded peer-reviewed article. So we don’t expect there is a major error. What we say is the abstraction they are using doesn’t match the physical abstraction I would pick. I pick a different one and I get different results. This is what I would like to discuss. Continue reading I still think you can manufacture an unfair coin

Using closures as objects in R

For more and more clients we have been using a nice coding pattern taught to us by Garrett Grolemund in his book Hands-On Programming with R: make a function that returns a list of functions. This turns out to be a classic functional programming techique: use closures to implement objects (terminology we will explain).

It is a pattern we strongly recommend, but with one caveat: it can leak references similar to the manner described in here. Once you work out how to stomp out the reference leaks the “function that returns a list of functions” pattern is really strong.

We will discuss this programming pattern and how to use it effectively. Continue reading Using closures as objects in R

One place not to use the Sharpe ratio

Having worked in finance I am a public fan of the Sharpe ratio. I have written about this here and here.

One thing I have often forgotten (driving some bad analyses) is: the Sharpe ratio isn’t appropriate for models of repeated events that already have linked mean and variance (such as Poisson or Binomial models) or situations where the variance is very small (with respect to the mean or expectation). These are common situations in a number of large scale online advertising problems (such as modeling the response rate to online advertisements or email campaigns).

Photo “eggs in a basket” copyright MicoAssist appropriate CC license

In this note we will quickly explain the problem. Continue reading One place not to use the Sharpe ratio

The Win-Vector R data science value pack

Win-Vector LLC is proud to announce the R data science value pack. 50% off our video course Introduction to Data Science (available at Udemy) and 30% off Practical Data Science with R (from Manning). Pick any combination of video, e-book, and/or print-book you want. Instructions below.

Please share and Tweet! Continue reading The Win-Vector R data science value pack