One of the trickier tasks in clustering is determining the appropriate number of clusters. Domain-specific knowledge is always best, when you have it, but there are a number of heuristics for getting at the likely number of clusters in your data. We cover a few of them in Chapter 8 (available as a free sample chapter) of our book Practical Data Science with R.

We also came upon another cool approach, in the mixtools package for mixture model analysis. As with clustering, if you want to fit a mixture model (say, a mixture of gaussians) to your data, it helps to know how many components are in your mixture. The boot.comp function estimates the number of components (let’s call it k) by incrementally testing the hypothesis that there are k+1 components against the null hypothesis that there are k components, via parametric bootstrap.

You can use a similar idea to estimate the number of clusters in a clustering problem, if you make a few assumptions about the shape of the clusters. This approach is only heuristic, and more ad-hoc in the clustering situation than it is in mixture modeling. Still, it’s another approach to add to your toolkit, and estimating the number of clusters via a variety of different heuristics isn’t a bad idea.

The combination of R plus SQL offers an attractive way to work with what we call medium-scale data: data that’s perhaps too large to gracefully work with in its entirety within your favorite desktop analysis tool (whether that be R or Excel), but too small to justify the overhead of big data infrastructure. In some cases you can use a serverless SQL database that gives you the power of SQL for data manipulation, while maintaining a lightweight infrastructure.

We call this work pattern “SQL Screwdriver”: delegating data handling to a lightweight infrastructure with the power of SQL for data manipulation.

We assume for this how-to that you already have a PostgreSQL database up and running. To get PostgreSQL for Windows, OSX, or Unix use the instructions at PostgreSQL downloads. If you happen to be on a Mac, then Postgres.app provides a “serverless” (or application oriented) install option.

For the rest of this post, we give a quick how-to on using the RpostgreSQL package to interact with Postgres databases in R.

We have two public appearances coming up in the next few weeks:

Workshop at ODSC, San Francisco – November 14

Both of us will be giving a two-hour workshop called Preparing Data for Analysis using R: Basic through Advanced Techniques. We will cover key issues in this important but often neglected aspect of data science, what can go wrong, and how to fix it. This is part of the Open Data Science Conference (ODSC) at the Marriot Waterfront in Burlingame, California, November 14-15. If you are attending this conference, we look forward to seeing you there!

You can find an abstract for the workshop, along with links to software and code you can download ahead of time, here.

An Introduction to Differential Privacy as Applied to Machine Learning: Women in ML/DS – December 2

I (Nina) will give a talk to the Bay Area Women in Machine Learning & Data Science Meetup group, on applying differential privacy for reusable hold-out sets in machine learning. The talk will also cover the use of differential privacy in effects coding (what we’ve been calling “impact coding”) to reduce the bias that can arise from the use of nested models. Information about the talk, and the meetup group, can be found here.

We’re looking forward to these upcoming appearances, and we hope you can make one or both of them.

We’ve just finished off a series of articles on some recent research results applying differential privacy to improve machine learning. Some of these results are pretty technical, so we thought it was worth working through concrete examples. And some of the original results are locked behind academic journal paywalls, so we’ve tried to touch on the highlights of the papers, and to play around with variations of our own.

A Simpler Explanation of Differential Privacy: Quick explanation of epsilon-differential privacy, and an introduction to an algorithm for safely reusing holdout data, recently published in Science (Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, Aaron Roth, “The reusable holdout: Preserving validity in adaptive data analysis”, Science, vol 349, no. 6248, pp. 636-638, August 2015).

Note that Cynthia Dwork is one of the inventors of differential privacy, originally used in the analysis of sensitive information.

Using differential privacy to reuse training data: Specifically, how differential privacy helps you build efficient encodings of categorical variables with many levels from your training data without introducing undue bias into downstream modeling.

Differential privacy was originally developed to facilitate secure analysis over sensitive data, with mixed success. It’s back in the news again now, with exciting results from Cynthia Dwork, et. al. (see references at the end of the article) that apply results from differential privacy to machine learning.

In this article we’ll work through the definition of differential privacy and demonstrate how Dwork et.al.’s recent results can be used to improve the model fitting process.

The Voight-Kampff Test: Looking for a difference. Scene from Blade Runner

Here’s a caricature of a data science project: your company or client needs information (usually to make a decision). Your job is to build a model to predict that information. You fit a model, perhaps several, to available data and evaluate them to find the best. Then you cross your fingers that your chosen model doesn’t crash and burn in the real world.

We’ve discussed detecting if your data has a signal. Now: how do you know that your model is good? And how sure are you that it’s better than the models that you rejected?

Notice the Sun in the 4th revolution about the earth. A very pretty, but not entirely reliable model.

In this latest “Statistics as it should be” article, we will systematically look at what to worry about and what to check. This is standard material, but presented in a “data science” oriented manner. Meaning we are going to consider scoring system utility in terms of service to a negotiable business goal (one of the many ways data science differs from pure machine learning).

The goal of cluster analysis is to group the observations in the data into clusters such that every datum in a cluster is more similar to other datums in the same cluster than it is to datums in other clusters. This is an analysis method of choice when annotated training data is not readily available. In this article, based on chapter 8 of Practical Data Science with R, the authors discuss one approach to evaluating the clusters that are discovered by a chosen clustering method. Continue reading Bootstrap Evaluation of Clusters

Image by Liz Sullivan, Creative Commons. Source: Wikimedia

An all too common approach to modeling in data science is to throw all possible variables at a modeling procedure and “let the algorithm sort it out.” This is tempting when you are not sure what are the true causes or predictors of the phenomenon you are interested in, but it presents dangers, too. Very wide data sets are computationally difficult for some modeling procedures; and more importantly, they can lead to overfit models that generalize poorly on new data. In extreme cases, wide data can fool modeling procedures into finding models that look good on training data, even when that data has no signal. We showed some examples of this previously in our “Bad Bayes” blog post.

In our previous post in this series, we introduced sessionization, or converting log data into a form that’s suitable for analysis. We looked at basic considerations, like dealing with time, choosing an appropriate dataset for training models, and choosing appropriate (and achievable) business goals. In that previous example, we sessionized the data by considering all possible aggregations (window widths) of the data as features. Such naive sessionization can quickly lead to very wide data sets, with potentially more features than you have datums (and collinear features, as well). In this post, we will use the same example, but try to select our features more intelligently.

Recall that you have a mobile app with both free (A) and paid (B) actions; if a customer’s tasks involve too many paid actions, they will abandon the app. Your goal is to detect when a customer is in a state when they are likely to abandon, and offer them (perhaps through an in-app ad) a more economical alternative, for example a “Pro User” subscription that allows them to do what they are currently doing at a lower rate. You don’t want to be too aggressive about showing customers this ad, because showing it to someone who doesn’t need the subscription service is likely to antagonize them (and convince them to stop using your app).

You want to build a model that predicts whether a customer will abandon the app (“exit”) within seven days. Your training set is a set of 648 customers who were present on a specific reference day (“day 0”); their activity on day 0 and the ten days previous to that (days 1 through 10), and how many days until each customer exited (Inf for customers who never exit), counting from day 0. For each day, you constructed all possible windows within those ten days, and counted the relative rates of A events and B events in each window. This gives you 132 features per row. You also have a hold-out set of 660 customers, with the same structure. You can download the wide data set used for these examples as an .rData file here. The explanation of the variable names is in the previous post in this series.

In the previous installment, we built a regularized (ridge) logistic regression model over all 132 features. This model didn’t perform too badly, but in general there is more danger of overfitting when working with very wide data sets; in addition, it is quite expensive to analyze a large number of variables with standard implementations of logistic regression. In this installment, we will look for potentially more robust and less expensive ways of analyzing this data.