Posted on Categories Administrativia, data science, Exciting Techniques, Opinion, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , , , Leave a comment on Upcoming speaking engagments

Upcoming speaking engagments

I have a couple of public appearances coming up soon.

Continue reading Upcoming speaking engagments

Posted on Categories Administrativia, data science, Opinion, Practical Data Science, Pragmatic Data Science, StatisticsTags , , , Leave a comment on Four Years of Practical Data Science with R

Four Years of Practical Data Science with R

Four years ago today authors Nina Zumel and John Mount received our author’s copies of Practical Data Science with R!

1960860 10203595069745403 608808262 o

Continue reading Four Years of Practical Data Science with R

Posted on Categories Administrativia, Practical Data Science, StatisticsTags , , 2 Comments on Hangul/Korean edition of Practical Data Science with R!

Hangul/Korean edition of Practical Data Science with R!

Excited to see our new Hangul/Korean edition of “Practical Data Science with R” by Nina Zumel, John Mount, translated by Daekyoung Lim.

IMG 0865

Continue reading Hangul/Korean edition of Practical Data Science with R!

Posted on Categories Administrativia, StatisticsTags , , , , , Leave a comment on Speaking on New Tools for R at Big Data Scale

Speaking on New Tools for R at Big Data Scale

I would like to thank LinkedIn for letting me speak with some of their data scientists and analysts.


IMG 4606
John Mount discussing rquery SQL generation at LinkedIn.

If you have a group using R at database or Spark scale, please reach out ( jmount at win-vector.com ). We (Win-Vector LLC) have some great new tools I’d love to speak on and share. I’d love an invite, especially if your group is in the San Francisco Bay Area.

Note: we also now have a 1/2 to 1 day on-site “Spark for R Users” training offering. Again, please reach out if your team is interested.

Posted on Categories Administrativia, Coding, Statistics, TutorialsTags , , , 7 Comments on R Tip: Use [[ ]] Wherever You Can

R Tip: Use [[ ]] Wherever You Can

R tip: use [[ ]] wherever you can.

In R the [[ ]] is the operator that (when supplied a simple scalar argument) pulls a single element out of lists (and the [ ] operator pulls out sub-lists).

For vectors [[ ]] and [ ] appear to be synonyms (modulo the issue of names). However, for a vector [[ ]] checks that the indexing argument is a scalar, so if you intend to retrieve one element this is a good way of getting an extra check and documenting intent. Also, when writing reusable code you may not always be sure if your code is going to be applied to a vector or list in the future.

It is safer to get into the habit of always using [[ ]] when you intend to retrieve a single element.

Example with lists:

list("a", "b")[1]
#> [[1]]
#> [1] "a"

list("a", "b")[[1]]
#> [1] "a"

Example with vectors:

c("a", "b")[1]
#> [1] "a"

c("a", "b")[[1]]
#> [1] "a"

The idea is: in situations where both [ ] and [[ ]] apply we rarely see [[ ]] being the worse choice.


Note on this article series.

This R tips series is short simple notes on R best practices, and additional packaged tools. The intent is to show both how to perform common tasks, and how to avoid common pitfalls. I hope to share about 20 of these about every other day to learn from the community which issues resonate and to also introduce some of features from some of our packages. It is an opinionated series and will sometimes touch on coding style, and also try to showcase appropriate Win-Vector LLC R tools.

Posted on Categories Administrativia, data science, Exciting Techniques, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , ,

Data Reshaping with cdata

I’ve just shared a short webcast on data reshaping in R using the cdata package.

(link)

We also have two really nifty articles on the theory and methods:

Please give it a try!

This is the material I recently presented at the January 2017 BARUG Meetup.

NewImage

Posted on Categories Administrativia, Exciting Techniques, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, StatisticsTags , , , ,

Big cdata News

I have some big news about our R package cdata. We have greatly improved the calling interface and Nina Zumel has just written the definitive introduction to cdata.

cdata is our general coordinatized data tool. It is what powers the deep learning performance graph (here demonstrated with R and Keras) that I announced a while ago.

KerasPlot

However, cdata is much more than that.

Continue reading Big cdata News

Posted on Categories Administrativia, Opinion, Pragmatic Data Science, Pragmatic Machine Learning, Programming, StatisticsTags , , , , , , , , 4 Comments on Getting started with seplyr

Getting started with seplyr

A big “thank you!!!” to Microsoft for hosting our new introduction to seplyr. If you are working R and big data I think the seplyr package can be a valuable tool.


Safety
Continue reading Getting started with seplyr

Posted on Categories Administrativia, Statistics, TutorialsTags , , , , , 8 Comments on Update on coordinatized or fluid data

Update on coordinatized or fluid data

We have just released a major update of the cdata R package to CRAN.

Cdata

If you work with R and data, now is the time to check out the cdata package. Continue reading Update on coordinatized or fluid data