Posted on Categories data science, Opinion, Pragmatic Data Science, Pragmatic Machine Learning, TutorialsTags , , , , , 1 Comment on Setting expectations in data science projects

Setting expectations in data science projects

How is it even possible to set expectations and launch data science projects?

Data science projects vary from “executive dashboards” through “automate what my analysts are already doing well” to “here is some data, we would like some magic.” That is you may be called to produce visualizations, analytics, data mining, statistics, machine learning, method research or method invention. Given the wide range of wants, diverse data sources, required levels of innovation and methods it often feels like you can not even set goals for data science projects.

Many of these projects either fail or become open ended (become unmanageable).

As an alternative we describe some of our methods for setting quantifiable goals and front-loading risk in data science projects. Continue reading Setting expectations in data science projects