Found this great offer from mkt@manning.com in our email today! Very excited to see Nina Zumel get some recognition and thought we would share it (and the generous discount) here. Continue reading Great book discount from Manning (and more about one of our authors)

# Category: Practical Data Science

## A bit of the agenda of Practical Data Science with R

The goal of Zumel/Mount: Practical Data Science with R is to teach, through guided practice, the skills of a data scientist. We define a data scientist as the person who organizes client input, data, infrastructure, statistics, mathematics and machine learning to deploy useful predictive models into production.

Our plan to teach is to:

- Order the material by what is expected from the data scientist.
- Emphasize the already available bread and butter machine learning algorithms that most often work.
- Provide a large set of worked examples.
- Expose the reader to a number of realistic data sets.

Some of these choices may put-off some potential readers. But it is our goal to try and spend out time on what a data scientist needs to do. Our point: the data scientist is responsible for end to end results, which is not always entirely fun. If you want to specialize in machine learning algorithms or only big data infrastructure, that is a fine goal. However, the job of the data scientist is to understand and orchestrate all of the steps (working with domain experts, curating data, using data tools, and applying machine learning and statistics).

Once you define what a data scientist does, you find fewer people want to work as one.

We expand a few of our points below. Continue reading A bit of the agenda of Practical Data Science with R

## Bandit Formulations for A/B Tests: Some Intuition

Controlled experiments embody the best scientific design for establishing a causal relationship between changes and their influence on user-observable behavior.

A/B tests are one of the simplest ways of running controlled experiments to evaluate the efficacy of a proposed improvement (a new medicine, compared to an old one; a promotional campaign; a change to a website). To run an A/B test, you split your population into a *control* group (let’s call them “A”) and a *treatment* group (“B”). The A group gets the “old” protocol, the B group gets the proposed improvement, and you collect data on the outcome that you are trying to achieve: the rate that patients are cured; the amount of money customers spend; the rate at which people who come to your website actually complete a transaction. In the traditional formulation of A/B tests, you measure the outcomes for the A and B groups, determine which is better (if either), and whether or not the difference observed is statistically significant. This leads to questions of test size: how big a population do you need to get reliably detect a difference to the desired statistical significance? And to answer that question, you need to know how big a difference (*effect size*) matters to you.

The irony is that to detect small differences accurately you need a larger population size, even though in many cases, if the difference is small, *picking the wrong answer matters less*. It can be easy to lose sight of that observation in the struggle to determine correct experiment sizes.

There is an alternative formulation for A/B tests that is especially suitable for online situations, and that explicitly takes the above observation into account: the so-called *multi-armed bandit* problem. Imagine that you are in a casino, faced with K slot machines (which used to be called “one-armed bandits” because they had a lever that you pulled to play (the “arm”) — and they pretty much rob you of all your money). Each of the slot machines pays off at a different (unknown) rate. You want to figure out which of the machines pays off at the highest rate, then switch to that one — but you don’t want to lose too much money to the suboptimal slot machines while doing so. What’s the best strategy?

The “pulling one lever at a time” formulation isn’t a bad way of thinking about online transactions (as opposed to drug trials); you can imagine all your customers arriving at your site sequentially, and being sent to bandit A or bandit B according to some strategy. Note also, that if the best bandit and the second-best bandit have very similar payoff rates, then settling on the second best bandit, while not optimal, isn’t necessarily that bad a strategy. You lose winnings — but not much.

Traditionally, bandit games are infinitely long, so analysis of bandit strategies is asymptotic. The idea is that you test less as the game continues — but the testing stage can go on for a very long time (often interleaved with periods of pure *exploitation*, or playing the best bandit). This infinite-game assumption isn’t always tenable for A/B tests — for one thing, the world changes; for another, testing is not necessarily without cost. We’ll look at finite games below.

Continue reading Bandit Formulations for A/B Tests: Some Intuition

## Can a classifier that never says “yes” be useful?

Many data science projects and presentations are needlessly derailed by not having set shared business relevant quantitative expectations early on (for some advice see Setting expectations in data science projects). One of the most common issues is the common layman expectation of “perfect prediction” from classification projects. It is important to set expectations correctly so your partners know what you are actually working towards and do not consider late choices of criteria disappointments or “venue shopping.” Continue reading Can a classifier that never says “yes” be useful?

## Some statistics about the book

The release date for Zumel, Mount “Practical Data Science with R” is getting close. I thought I would share a few statistics about what goes into this kind of book. Continue reading Some statistics about the book

## Generalized linear models for predicting rates

I often need to build a predictive model that estimates rates. The example of our age is: ad click through rates (how often a viewer clicks on an ad estimated as a function of the features of the ad and the viewer). Another timely example is estimating default rates of mortgages or credit cards. You could try linear regression, but specialized tools often do much better. For rate problems involving estimating probabilities and frequencies we recommend logistic regression. For non-frequency (and non-categorical) rate problems (such as forecasting yield or purity) we suggest beta regression.

In this note we will work a toy problem and suggest some relevant R analysis libraries. Continue reading Generalized linear models for predicting rates

## Big News! Practical Data Science with R is content complete!

The last appendix has gone to the editors; the book is now content complete. What a relief!

We are hoping to release the book late in the first quarter of next year. In the meantime, you can still get early drafts of our chapters through Manning’s Early Access program, if you haven’t yet. The link is here.

We look forward to sharing the final version of the book with you next year.

## On writing a technical book

I have been doing a *lot* of writing lately (the book, clients, blog, status updates, and the occasional tweet). This has made me acutely aware of how different many of these writing tasks tend to be. Continue reading On writing a technical book

## Practical Data Science with R: Manning Deal of the Day November 19th 2013

Please share: Manning Deal of the Day November 19: Half off Practical Data Science with R. Use code dotd1119au at www.manning.com/zumel/.

## Practical Data Science with R October 2013 update

A quick status update on our upcoming book “Practical Data Science with R” by Nina Zumel and John Mount.

We are really happy with how the book is coming out. We were able to cover most everything we hoped to. Part 1 (especially chapter 3) is already being used in courses, and has some very good stuff on how to review data. Part 2 covers the “statistical / machine-learning canon,” and turns out to be a very complete demonstration of what odd steps are needed to move from start to finish for each example in R. Part 3 is going to finish with the important (but neglected) topics of delivering results to production, and building good documentation and presentations. Continue reading Practical Data Science with R October 2013 update