Category Archives: Rants

Unprincipled Component Analysis

As a data scientist I have seen variations of principal component analysis and factor analysis so often blindly misapplied and abused that I have come to think of the technique as unprincipled component analysis. PCA is a good technique often used to reduce sensitivity to overfitting. But this stated design intent leads many to (falsely) believe that any claimed use of PCA prevents overfit (which is not always the case). In this note we comment on the intent of PCA like techniques, common abuses and other options.

The idea is to illustrate what can quietly go wrong in an analysis and what tests to perform to make sure you see the issue. The main point is some analysis issues can not be fixed without going out and getting more domain knowledge, more variables or more data. You can’t always be sure that you have insufficient data in your analysis (there is always a worry that some clever technique will make the current data work), but it must be something you are prepared to consider. Continue reading Unprincipled Component Analysis

Use standard deviation (not mad about MAD)

Nassim Nicholas Taleb recently wrote an article advocating the abandonment of the use of standard deviation and advocating the use of mean absolute deviation. Mean absolute deviation is indeed an interesting and useful measure- but there is a reason that standard deviation is important even if you do not like it: it prefers models that get totals and averages correct. Absolute deviation measures do not prefer such models. So while MAD may be great for reporting, it can be a problem when used to optimize models. Continue reading Use standard deviation (not mad about MAD)

Yet another bit on bitcoin: is it a semi closed-end index fund on electricity and hardware?

Bitcoin continues to surge in buzz and price (194,993 coin transfer, US Senate hearings and astronomical price and total capitalization). This gets me to thinking: what in finance terms is Bitcoin? It claims aspire to be a currency, but what is it actually behaving like? Continue reading Yet another bit on bitcoin: is it a semi closed-end index fund on electricity and hardware?

Worry about correctness and repeatability, not p-values

In data science work you often run into cryptic sentences like the following:

Age adjusted death rates per 10,000 person years across incremental thirds of muscular strength were 38.9, 25.9, and 26.6 for all causes; 12.1, 7.6, and 6.6 for cardiovascular disease; and 6.1, 4.9, and 4.2 for cancer (all P < 0.01 for linear trend).

(From “Association between muscular strength and mortality in men: prospective cohort study,” Ruiz et. al. BMJ 2008;337:a439.)

The accepted procedure is to recognize “p” or “p-value” as shorthand for “significance,” keep your mouth shut and hope the paper explains what is actually claimed somewhere later on. We know the writer is claiming significance, but despite the technical terminology they have not actually said which test they actually ran (lm(), glm(), contingency table, normal test, t-test, f-test, g-test, chi-sq, permutation test, exact test and so on). I am going to go out on a limb here and say these type of sentences are gibberish and nobody actually understands them. From experience we know generally what to expect, but it isn’t until we read further we can precisely pin down what is actually being claimed. This isn’t the authors’ fault, they are likely good scientists, good statisticians, and good writers; but this incantation is required by publishing tradition and reviewers.

We argue you should worry about the correctness of your results (how likely a bad result could look like yours, the subject of frequentist significance) and repeatability (how much variance is in your estimation procedure, as measured by procedures like the bootstrap). p-values and significance are important in how they help structure the above questions.

The legitimate purpose of technical jargon is to make conversations quicker and more precise. However, saying “p” is not much shorter than saying “significance” and there are many different procedures that return p-values (so saying “p” does not limit you down to exactly one procedure like a good acronym might). At best the savings in time would be from having to spend 10 minutes thinking which interpretation of significance is most approbate to the actual problem at hand versus needing a mere 30 seconds to read about the “p.” However, if you don’t have 10 minutes to consider if the entire result a paper is likely an observation artifact due to chance or noise (the subject of significance) then you really don’t care much about the paper.

In our opinion “p-values” have degenerated from a useful jargon into a secretive argot. We are going to discuss thinking about significance as “worrying about correctness” (a fundamental concern) instead of as a cut and dried statistical procedure you should automate out of view (uncritically copying reported p’s from fitters). Yes “p”s are significances, but there is no reason to not just say what sort of error you are claiming is unlikely. Continue reading Worry about correctness and repeatability, not p-values

A randomized algorithm that fails with near certainty

Recently Heroku was accused of using random queue routing while claiming to supply something similar to shortest queue routing (see: James Somers – Heroku’s Ugly Secret and more discussion at hacker news: Heroku’s Ugly Secret). If this is true it is pretty bad. I like randomized algorithms and I like queueing theory, but you need to work through proofs or at least simulations when playing with queues. You don’t want to pick an arbitrary algorithm and claim it works “due to randomness.” We will show a very quick example where randomized routing is very bad with near certainty. Just because things are “random” doesn’t mean you can’t or shouldn’t characterize them. Continue reading A randomized algorithm that fails with near certainty

How to test XCOM “dice rolls” for fairness

XCOM: Enemy Unknown is a turn based video game where the player choses among actions (for example shooting an alien) that are labeled with a declared probability of success.

Ss 14 xl
Image copyright Firaxis Games

A lot of gamers, after missing a 80% chance of success shot, start asking if the game’s pseudo random number generator is fair. Is the game really rolling the dice as stated, or is it cheating? Of course the matching question is: are player memories at all fair; would they remember the other 4 out of 5 times they made such a shot?

This article is intended as an introduction to the methods you would use to test such a question (be it in a video game, in science, or in a business application such as measuring advertisement conversion). There are already some interesting articles on collecting and analyzing XCOM data and finding and characterizing the actual pseudo random generator code in the game, and discussing the importance of repeatable pseudo-random results. But we want to add a discussion pointed a bit more at analysis technique in general. We emphasize methods that are efficient in their use of data. This is a statistical term meaning that a maximal amount of learning is gained from the data. In particular we do not recommend data binning as a first choice for analysis as it cuts down on sample size and thus is not the most efficient estimation technique.

Continue reading How to test XCOM “dice rolls” for fairness

Please stop using Excel-like formats to exchange data

I know “officially” data scientists all always work in “big data” environments with data in a remote database, streaming store or key-value system. But in day to day work Excel files and Excel export files get used a lot and cause a disproportionate amount of pain.

I would like to make a plea to my fellow data scientists to stop using Excel-like formats for informal data exchange and become much stricter in producing and insisting on truly open machine readable files. Open files are those in an open format (not proprietary like Microsoft Excel) and machine readable in this case means readable by a very simple program (preferring simple escaping strategies to complicated quoting strategies). A lot of commonly preferred formats surprisingly do not meet these conditions: for example Microsoft Excel, XML and quoted CSV all fail the test. A few formats that do meet these conditions: SQL dumps, JSON and what I call “strong TSV.” I will illustrate some of the difficulty in using ad-hoc formats in R and suggest work-arounds. Continue reading Please stop using Excel-like formats to exchange data

I am done with 32 bit machines

I am going to come-out and say it: I am emotionally done with 32 bit machines and operating systems. My sympathy for them is at an end.

I know that ARM is still 32 bit, but in that case you get something big back in exchange: the ability to deploy on smartphones and tablets. For PCs and servers 32 bit addressing’s time is long past, yet we still have to code for and regularly run into these machines and operating systems. The time/space savings of 32 bit representations is nothing compared to the loss of capability in sticking with that architecture and the wasted effort in coding around it. My work is largely data analysis in a server environment, and it is just getting ridiculous to not be able to always assume at least a 64 bit machine. Continue reading I am done with 32 bit machines

Minimal Version Control Lesson: Use It

There is no excuse for a digital creative person to not use some sort of version control or source control. In the past disk space was too dear, version control systems were too expensive and software was not powerful enough; this is no longer the case. Unless your work is worthless both back it up and version control it. We will demonstrate a minimal set of version control commands that will one day save your bacon. Continue reading Minimal Version Control Lesson: Use It