Category Archives: Statistics To English Translation

Bandit Formulations for A/B Tests: Some Intuition

Controlled experiments embody the best scientific design for establishing a causal relationship between changes and their influence on user-observable behavior.

– Kohavi, Henne, Sommerfeld, “Practical Guide to Controlled Experiments on the Web” (2007)

A/B tests are one of the simplest ways of running controlled experiments to evaluate the efficacy of a proposed improvement (a new medicine, compared to an old one; a promotional campaign; a change to a website). To run an A/B test, you split your population into a control group (let’s call them “A”) and a treatment group (“B”). The A group gets the “old” protocol, the B group gets the proposed improvement, and you collect data on the outcome that you are trying to achieve: the rate that patients are cured; the amount of money customers spend; the rate at which people who come to your website actually complete a transaction. In the traditional formulation of A/B tests, you measure the outcomes for the A and B groups, determine which is better (if either), and whether or not the difference observed is statistically significant. This leads to questions of test size: how big a population do you need to get reliably detect a difference to the desired statistical significance? And to answer that question, you need to know how big a difference (effect size) matters to you.

The irony is that to detect small differences accurately you need a larger population size, even though in many cases, if the difference is small, picking the wrong answer matters less. It can be easy to lose sight of that observation in the struggle to determine correct experiment sizes.

There is an alternative formulation for A/B tests that is especially suitable for online situations, and that explicitly takes the above observation into account: the so-called multi-armed bandit problem. Imagine that you are in a casino, faced with K slot machines (which used to be called “one-armed bandits” because they had a lever that you pulled to play (the “arm”) — and they pretty much rob you of all your money). Each of the slot machines pays off at a different (unknown) rate. You want to figure out which of the machines pays off at the highest rate, then switch to that one — but you don’t want to lose too much money to the suboptimal slot machines while doing so. What’s the best strategy?

NewImage

The “pulling one lever at a time” formulation isn’t a bad way of thinking about online transactions (as opposed to drug trials); you can imagine all your customers arriving at your site sequentially, and being sent to bandit A or bandit B according to some strategy. Note also, that if the best bandit and the second-best bandit have very similar payoff rates, then settling on the second best bandit, while not optimal, isn’t necessarily that bad a strategy. You lose winnings — but not much.

Traditionally, bandit games are infinitely long, so analysis of bandit strategies is asymptotic. The idea is that you test less as the game continues — but the testing stage can go on for a very long time (often interleaved with periods of pure exploitation, or playing the best bandit). This infinite-game assumption isn’t always tenable for A/B tests — for one thing, the world changes; for another, testing is not necessarily without cost. We’ll look at finite games below.

Continue reading

Bayesian and Frequentist Approaches: Ask the Right Question

It occurred to us recently that we don’t have any articles about Bayesian approaches to statistics here. I’m not going to get into the “Bayesian versus Frequentist” war; in my opinion, which style of approach to use is less about philosophy, and more about figuring out the best way to answer a question. Once you have the right question, then the right approach will naturally suggest itself to you. It could be a frequentist approach, it could be a bayesian one, it could be both — even while solving the same problem.

Let’s take the example that Bayesians love to hate: significance testing, especially in clinical trial style experiments. Clinical trial experiments are designed to answer questions of the form “Does treatment X have a discernible effect on condition Y, on average?” To be specific, let’s use the question “Does drugX reduce hypertension, on average?” Assuming that your experiment does show a positive effect, the statistical significance tests that you run should check for the sorts of problems that John discussed in our previous article, Worry about correctness and repeatability, not p-values: What are the chances that an ineffective drug could produce the results that I saw? How likely is it that another researcher could replicate my results with the same size trial?

We can argue about whether or not the question we are answering is the correct question — but given that it is the question, the procedure to answer it and to verify the statistical validity of the results is perfectly appropriate.

So what is the correct question? From your family doctor’s viewpoint, a clinical trial answers the question “If I prescribe drugX to all my hypertensive patients, will their blood pressure improve, on average?” That isn’t the question (hopefully) that your doctor actually asks, though possibly your insurance company does. Your doctor should be asking “If I prescribe drugX to this patient, the one sitting in my examination room, will the patient’s blood pressure improve?” There is only one patient, so there is no such thing as “on average.”

If your doctor has a masters degree in statistics, the question might be phrased as “If I prescribe drugX to this patient, what is the posterior probability that the patient’s blood pressure will improve?” And that’s a bayesian question. Continue reading

Worry about correctness and repeatability, not p-values

In data science work you often run into cryptic sentences like the following:

Age adjusted death rates per 10,000 person years across incremental thirds of muscular strength were 38.9, 25.9, and 26.6 for all causes; 12.1, 7.6, and 6.6 for cardiovascular disease; and 6.1, 4.9, and 4.2 for cancer (all P < 0.01 for linear trend).

(From “Association between muscular strength and mortality in men: prospective cohort study,” Ruiz et. al. BMJ 2008;337:a439.)

The accepted procedure is to recognize “p” or “p-value” as shorthand for “significance,” keep your mouth shut and hope the paper explains what is actually claimed somewhere later on. We know the writer is claiming significance, but despite the technical terminology they have not actually said which test they actually ran (lm(), glm(), contingency table, normal test, t-test, f-test, g-test, chi-sq, permutation test, exact test and so on). I am going to go out on a limb here and say these type of sentences are gibberish and nobody actually understands them. From experience we know generally what to expect, but it isn’t until we read further we can precisely pin down what is actually being claimed. This isn’t the authors’ fault, they are likely good scientists, good statisticians, and good writers; but this incantation is required by publishing tradition and reviewers.

We argue you should worry about the correctness of your results (how likely a bad result could look like yours, the subject of frequentist significance) and repeatability (how much variance is in your estimation procedure, as measured by procedures like the bootstrap). p-values and significance are important in how they help structure the above questions.

The legitimate purpose of technical jargon is to make conversations quicker and more precise. However, saying “p” is not much shorter than saying “significance” and there are many different procedures that return p-values (so saying “p” does not limit you down to exactly one procedure like a good acronym might). At best the savings in time would be from having to spend 10 minutes thinking which interpretation of significance is most approbate to the actual problem at hand versus needing a mere 30 seconds to read about the “p.” However, if you don’t have 10 minutes to consider if the entire result a paper is likely an observation artifact due to chance or noise (the subject of significance) then you really don’t care much about the paper.

In our opinion “p-values” have degenerated from a useful jargon into a secretive argot. We are going to discuss thinking about significance as “worrying about correctness” (a fundamental concern) instead of as a cut and dried statistical procedure you should automate out of view (uncritically copying reported p’s from fitters). Yes “p”s are significances, but there is no reason to not just say what sort of error you are claiming is unlikely. Continue reading

How to test XCOM “dice rolls” for fairness

XCOM: Enemy Unknown is a turn based video game where the player choses among actions (for example shooting an alien) that are labeled with a declared probability of success.


Ss 14 xl
Image copyright Firaxis Games

A lot of gamers, after missing a 80% chance of success shot, start asking if the game’s pseudo random number generator is fair. Is the game really rolling the dice as stated, or is it cheating? Of course the matching question is: are player memories at all fair; would they remember the other 4 out of 5 times they made such a shot?

This article is intended as an introduction to the methods you would use to test such a question (be it in a video game, in science, or in a business application such as measuring advertisement conversion). There are already some interesting articles on collecting and analyzing XCOM data and finding and characterizing the actual pseudo random generator code in the game, and discussing the importance of repeatable pseudo-random results. But we want to add a discussion pointed a bit more at analysis technique in general. We emphasize methods that are efficient in their use of data. This is a statistical term meaning that a maximal amount of learning is gained from the data. In particular we do not recommend data binning as a first choice for analysis as it cuts down on sample size and thus is not the most efficient estimation technique. Continue reading

Correlation and R-Squared

What is R2? In the context of predictive models (usually linear regression), where y is the true outcome, and f is the model’s prediction, the definition that I see most often is:

4471BBA8-E9DB-4D30-A9AE-A74F8C773247.jpg

In words, R2 is a measure of how much of the variance in y is explained by the model, f.

Under “general conditions”, as Wikipedia says, R2 is also the square of the correlation (correlation written as a “p” or “rho”) between the actual and predicted outcomes:

A4311540-8DFB-45FB-93F7-65E7B72AE6C8.jpg

I prefer the “squared correlation” definition, as it gets more directly at what is usually my primary concern: prediction. If R2 is close to one, then the model’s predictions mirror true outcome, tightly. If R2 is low, then either the model does not mirror true outcome, or it only mirrors it loosely: a “cloud” that — hopefully — is oriented in the right direction. Of course, looking at the graph always helps:

R2_compare.png

The question we will address here is : how do you get from R2 to correlation?

Continue reading

The equivalence of logistic regression and maximum entropy models

Nina Zumel recently gave a very clear explanation of logistic regression ( The Simpler Derivation of Logistic Regression ). In particular she called out the central role of log-odds ratios and demonstrated how the “deviance” (that mysterious
quantity reported by fitting packages) is both a term in “the pseudo-R^2″ (so directly measures goodness of fit) and is the quantity that is actually optimized during the fitting procedure. One great point of the writeup was how simple everything is once you start thinking in terms of derivatives (and that it isn’t so much the functional form of the sigmoid that is special but its relation to its own derivative that is special).

We adapt these presentation ideas to make explicit the well known equivalence of logistic regression and maximum entropy models. Continue reading

The Simpler Derivation of Logistic Regression

Logistic regression is one of the most popular ways to fit models for categorical data, especially for binary response data. It is the most important (and probably most used) member of a class of models called generalized linear models. Unlike linear regression, logistic regression can directly predict probabilities (values that are restricted to the (0,1) interval); furthermore, those probabilities are well-calibrated when compared to the probabilities predicted by some other classifiers, such as Naive Bayes. Logistic regression preserves the marginal probabilities of the training data. The coefficients of the model also provide some hint of the relative importance of each input variable.

While you don’t have to know how to derive logistic regression or how to implement it in order to use it, the details of its derivation give important insights into interpreting and troubleshooting the resulting models. Unfortunately, most derivations (like the ones in [Agresti, 1990] or [Hastie, et.al, 2009]) are too terse for easy comprehension. Here, we give a derivation that is less terse (and less general than Agresti’s), and we’ll take the time to point out some details and useful facts that sometimes get lost in the discussion. Continue reading

What is a large enough random sample?

With the well deserved popularity of A/B testing computer scientists are finally becoming practicing statisticians. One part of experiment design that has always been particularly hard to teach is how to pick the size of your sample. The two points that are hard to communicate are that:

  • The required sample size is essentially independent of the total population size.
  • The required sample size depends strongly on the strength of the effect you are trying to measure.

These things are only hard to explain because the literature is overly technical (too many buzzwords and too many irrelevant concerns) and these misapprehensions can’t be relieved unless you spend some time addressing the legitimate underlying concerns they are standing in for. As usual explanation requires common ground (moving to shared assumptions) not mere technical bullying.

We will try to work through these assumptions and then discuss proper sample size. Continue reading

Living in A Lognormal World

Recently, we had a client come to us with (among other things) the following question:
Who is more valuable, Customer Type A, or Customer Type B?

This client already tracked the net profit and loss generated by every customer who used his services, and had begun to analyze his customers by group. He was especially interested in Customer Type A; his gut instinct told him that Type A customers were quite profitable compared to the others (Type B) and he wanted to back up this feeling with numbers.

He found that, on average, Type A customers generate about $92 profit per month, and Type B customers average about $115 per month (The data and figures that we are using in this discussion aren’t actual client data, of course, but a notional example). He also found that while Type A customers make up about 4% of the customer base, they generate less than 4% of the net profit per month. So Type A customers actually seem to be less profitable than Type B customers. Apparently, our client was mistaken.

Or was he? Continue reading

Statistics to English Translation, Part 2b: Calculating Significance

In the previous installment of the Statistics to English Translation, we discussed the technical meaning of the term ”significant”. In this installment, we look at how significance is calculated. This article will be a little more technically detailed than the last one, but our primary goal is still to help you decipher statements about significance in research papers: statements like “
$ (F(2, 864) = 6.6, p = 0.0014)$ ”.

As in the last article, we will concentrate on situations where we want to test the difference of means. You should read that previous article first, so you are familiar with the terminology that we use in this one.

A pdf version of this current article can be found here.
Continue reading