Check out: I Write, Therefore I Think

# Category: Tutorials

## Error Handling in R

It’s often the case that I want to write an R script that loops over multiple datasets, or different subsets of a large dataset, running the same procedure over them: generating plots, or fitting a model, perhaps. I set the script running and turn to another task, only to come back later and find the loop has crashed partway through, on an unanticipated error. Here’s a toy example:

```
```> inputs = list(1, 2, 4, -5, 'oops', 0, 10)
> for(input in inputs) {
+ print(paste("log of", input, "=", log(input)))
+ }
[1] "log of 1 = 0"
[1] "log of 2 = 0.693147180559945"
[1] "log of 4 = 1.38629436111989"
[1] "log of -5 = NaN"
Error in log(input) : Non-numeric argument to mathematical function
In addition: Warning message:
In log(input) : NaNs produced

The loop handled the negative arguments more or less gracefully (depending on how you feel about NaN), but crashed on the non-numeric argument, and didn’t finish the list of inputs.

How are we going to handle this?

## Rudie can’t fail (if majorized)

We have been writing for a while about the convergence of Newton steps applied to a logistic regression (See: What does a generalized linear model do?, How robust is logistic regression? and Newton-Raphson can compute an average). This is all based on our principle of working examples for understanding. This eventually progressed to some writing on the nature of problem solving (a nice complement to our earlier writing on calculation). In the course of research we were directed to a very powerful technique called the MM algorithm (see: “The MM Algorithm” Kenneth Lang, 2007; “A Tutorial on MM Algorithms”, David R. Hunter, Kenneth Lange, Amer. Statistician 58:30–37, 2004; and “Monotonicity of Quadratic-Approximation Algorithms”, Dankmar Bohning, Bruce G. Lindsay, Ann. Inst. Statist. Math, Vol. 40, No. 4, pp 641-664, 1988). The MM algorithm introduces an essential idea: majorized functions (not to be confused with the majorized order on R^d). Majorization it is an interesting way to modify Newton methods to be reliable contractions (and therefore converge in a manner similar to EM algorithms).

Here we will work an example of the MM method. We will not work it in its most general form, but in a form that quickly reveals much of the beauty of the method. We also introduce a “collared Newton step” which guarantees convergence without resorting to line-search (essentially resolving the issues in solving a logistic regression by Newton style methods). Continue reading Rudie can’t fail (if majorized)

## Level fit summaries can be tricky in R

Model level fit summaries can be tricky in R. A quick read of model fit summary data for factor levels can be misleading. We describe the issue and demonstrate techniques for dealing with them. Continue reading Level fit summaries can be tricky in R

## How robust is logistic regression?

Logistic Regression is a popular and effective technique for modeling categorical outcomes as a function of both continuous and categorical variables. The question is: how robust is it? Or: how robust are the common implementations? (note: we are using robust in a more standard English sense of performs well for all inputs, not in the technical statistical sense of immune to deviations from assumptions or outliers.)

Even a detailed reference such as “Categorical Data Analysis” (Alan Agresti, Wiley, 1990) leaves off with an empirical observation: “the convergence … for the Newton-Raphson method is usually fast” (chapter 4, section 4.7.3, page 117). This is a book that if there is a known proof that the estimation step is a contraction (one very strong guarantee of convergence) you would expect to see the proof reproduced. I always suspected there was some kind of Brouwer fixed-point theorem based folk-theorem proving absolute convergence of the Newton-Raphson method in for the special case of logistic regression. This can not be the case as the Newton-Raphson method can diverge even on trivial full-rank well-posed logistic regression problems. Continue reading How robust is logistic regression?

## What does a generalized linear model do?

What does a generalized linear model do? R supplies a modeling function called `glm()`

that fits generalized linear models (abbreviated as GLMs). A natural question is what does it do and what problem is it solving for you? We work some examples and place generalized linear models in context with other techniques. Continue reading What does a generalized linear model do?

## Minimal Version Control Lesson: Use It

There is no excuse for a digital creative person to not use some sort of version control or source control. In the past disk space was too dear, version control systems were too expensive and software was not powerful enough; this is no longer the case. Unless your work is worthless both back it up *and* version control it. We will demonstrate a *minimal* set of version control commands that will one day save your bacon. Continue reading Minimal Version Control Lesson: Use It

## Modeling Trick: Impact Coding of Categorical Variables with Many Levels

One of the shortcomings of regression (both linear and logistic) is that it doesn’t handle categorical variables with a very large number of possible values (for example, postal codes). You can get around this, of course, by going to another modeling technique, such as Naive Bayes; however, you lose some of the advantages of regression — namely, the model’s explicit estimates of variables’ explanatory value, and explicit insight into and control of variable to variable dependence.

Here we discuss one modeling trick that allows us to keep categorical variables with a large number of values, and at the same time retain much of logistic regression’s power.

Continue reading Modeling Trick: Impact Coding of Categorical Variables with Many Levels

## Modeling Trick: Masked Variables

A primary problem data scientists face again and again is: how to properly adapt or treat variables so they are best possible components of a regression. Some analysts at this point delegate control to a shape choosing system like neural nets. I feel such a choice gives up far too much statistical rigor, transparency and control without real benefit in exchange. There are other, better, ways to solve the reshaping problem. A good rigorous way to treat variables are to try to find stabilizing transforms, introduce splines (parametric or non-parametric) or use generalized additive models. A practical or pragmatic approach we advise to get some of the piecewise reshaping power of splines or generalized additive models is: a modeling trick we call “masked variables.” This article works a quick example using masked variables. Continue reading Modeling Trick: Masked Variables

## How to outrun a crashing alien spaceship

Hollywood movies are obsessed with outrunning explosions and outrunning crashing alien spaceships. For explosions the movies give the optimal (but unusable) solution: run straight away. For crashing alien spaceships they give the same advice, but in this case it is wrong. We demonstrate the correct angle to flee.