Posted on Categories Administrativia, Opinion, Programming, StatisticsTags , , , , , 2 Comments on rquery: SQL from R

rquery: SQL from R

My BARUG rquery talk went very well, thank you very much to the attendees for being an attentive and generous audience.


IMG 5152

(John teaching rquery at BARUG, photo credit: Timothy Liu)

I am now looking for invitations to give a streamlined version of this talk privately to groups using R who want to work with SQL (with databases such as PostgreSQL or big data systems such as Apache Spark). rquery has a number of features that greatly improve team productivity in this environment (strong separation of concerns, strong error checking, high usability, specific debugging features, and high performance queries).

If your group is in the San Francisco Bay Area and using R to work with a SQL accessible data source, please reach out to me at jmount@win-vector.com, I would be honored to show your team how to speed up their project and lower development costs with rquery. If you are a big data vendor and some of your clients use R, I am especially interested in getting in touch: our system can help R users start working with your installation.

Posted on Categories Administrativia, StatisticsTags , , , , ,

Speaking on New Tools for R at Big Data Scale

I would like to thank LinkedIn for letting me speak with some of their data scientists and analysts.


IMG 4606
John Mount discussing rquery SQL generation at LinkedIn.

If you have a group using R at database or Spark scale, please reach out ( jmount at win-vector.com ). We (Win-Vector LLC) have some great new tools I’d love to speak on and share. I’d love an invite, especially if your group is in the San Francisco Bay Area.

Note: we also now have a 1/2 to 1 day on-site “Spark for R Users” training offering. Again, please reach out if your team is interested.

Posted on Categories Coding, data science, Programming, StatisticsTags , , , , , , , 12 Comments on Is 10,000 Cells Big?

Is 10,000 Cells Big?

Trick question: is a 10,000 cell numeric data.frame big or small?

In the era of "big data" 10,000 cells is minuscule. Such data could be fit on fewer than 1,000 punched cards (or less than half a box).


Punch card

The joking answer is: it is small when they are selling you the system, but can be considered unfairly large later.

Continue reading Is 10,000 Cells Big?

Posted on Categories Computer Science, data science, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, ProgrammingTags , , , , , , 3 Comments on rquery: Fast Data Manipulation in R

rquery: Fast Data Manipulation in R

Win-Vector LLC recently announced the rquery R package, an operator based query generator.

In this note I want to share some exciting and favorable initial rquery benchmark timings.

Continue reading rquery: Fast Data Manipulation in R

Posted on Categories Administrativia, Opinion, Pragmatic Data Science, Pragmatic Machine Learning, Programming, StatisticsTags , , , , , , , , 4 Comments on Getting started with seplyr

Getting started with seplyr

A big “thank you!!!” to Microsoft for hosting our new introduction to seplyr. If you are working R and big data I think the seplyr package can be a valuable tool.


Safety
Continue reading Getting started with seplyr

Posted on Categories Coding, data science, Exciting Techniques, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , , , , , , , 1 Comment on Win-Vector LLC announces new “big data in R” tools

Win-Vector LLC announces new “big data in R” tools

Win-Vector LLC is proud to introduce two important new tool families (with documentation) in the 0.5.0 version of seplyr (also now available on CRAN):

  • partition_mutate_se() / partition_mutate_qt(): these are query planners/optimizers that work over dplyr::mutate() assignments. When using big-data systems through R (such as PostgreSQL or Apache Spark) these planners can make your code faster and sequence steps to avoid critical issues (the complementary problems of too long in-mutate dependence chains, of too many mutate steps, and incidental bugs; all explained in the linked tutorials).
  • if_else_device(): provides a dplyr::mutate() based simulation of per-row conditional blocks (including conditional assignment). This allows powerful imperative code (such as often seen in porting from SAS) to be directly and legibly translated into performant dplyr::mutate() data flow code that works on Spark (via Sparklyr) and databases.


Blacksmith working

Image by Jeff Kubina from Columbia, Maryland – [1], CC BY-SA 2.0, Link

Continue reading Win-Vector LLC announces new “big data in R” tools

Posted on Categories Coding, Pragmatic Data Science, Pragmatic Machine Learning, StatisticsTags , , , , , 3 Comments on Vectorized Block ifelse in R

Vectorized Block ifelse in R

Win-Vector LLC has been working on porting some significant large scale production systems from SAS to R.

From this experience we want to share how to simulate, in R with Apache Spark (via Sparklyr), a nifty SAS feature: the vectorized “block if(){}else{}” structure. Continue reading Vectorized Block ifelse in R

Posted on Categories Pragmatic Data Science, Pragmatic Machine Learning, Programming, Statistics, TutorialsTags , , , , , , ,

Data Wrangling at Scale

Just wrote a new R article: “Data Wrangling at Scale” (using Dirk Eddelbuettel’s tint template).

Fd

Please check it out.

Posted on Categories Administrativia, Statistics, TutorialsTags , , , , , 8 Comments on Update on coordinatized or fluid data

Update on coordinatized or fluid data

We have just released a major update of the cdata R package to CRAN.

Cdata

If you work with R and data, now is the time to check out the cdata package. Continue reading Update on coordinatized or fluid data

Posted on Categories Administrativia, data science, StatisticsTags , , , 1 Comment on Some Announcements

Some Announcements

Some Announcements:

  • Dr. Nina Zumel will be presenting “Myths of Data Science: Things you Should and Should Not Believe”,
    Sunday, October 29, 2017
    10:00 AM to 12:30 PM at the She Talks Data Meetup (Bay Area).
  • ODSC West 2017 is soon. It is our favorite conference and we will be giving both a workshop and a talk.
    • Thursday Nov 2 2017,
      2:00 PM,
      Room T2,
      “Modeling big data with R, Sparklyr, and Apache Spark”,
      Workshop/Training intermediate, 4 hours,
      by Dr. John Mount (link).

    • Friday Nov 3 2017,
      4:15 PM,
      Room TR2
      “Myths of Data Science: Things you Should and Should Not Believe”,
      Data Science lecture beginner/intermediate, 45 minutes,
      by Dr. Nina Zumel (link, length, abstract, and title to be corrected).

    • We really hope you can make these talks.

  • On the “R for big data” front we have some big news: the replyr package now implements pivot/un-pivot (or what tidyr calls spread/gather) for big data (databases and Sparklyr). This data shaping ability adds a lot of user power. We call the theory “coordinatized data” and the work practice “fluid data”.