Posted on Categories Administrativia, Opinion, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , , , , , 3 Comments on Upcoming data preparation and modeling article series

Upcoming data preparation and modeling article series

I am pleased to announce that vtreat version 0.6.0 is now available to R users on CRAN.


Vtreat

vtreat is an excellent way to prepare data for machine learning, statistical inference, and predictive analytic projects. If you are an R user we strongly suggest you incorporate vtreat into your projects. Continue reading Upcoming data preparation and modeling article series

Posted on Categories data science, Opinion, Practical Data Science, Pragmatic Data Science, StatisticsTags , , , , , 4 Comments on Data Preparation, Long Form and tl;dr Form

Data Preparation, Long Form and tl;dr Form

Data preparation and cleaning are some of the most important steps of predictive analytic and data science tasks. They are laborious, where most of the errors are made, your last line of defense against a wild data, and hold the biggest opportunities for outcome improvement. No matter how much time you spend on them, they still seem like a neglected topic. Data preparation isn’t as self contained or genteel as tweaking machine learning models or hyperparameter tuning; and that is one of the reasons data preparation represents such an important practical opportunity for improvement.


NewImage

Photo: NY – http://nyphotographic.com/, License: Creative Commons 3 – CC BY-SA 3.0

Our group is distributing a detailed writeup of the theory and operation behind our R realization of a set of sound data preparation and cleaning procedures called vtreat here: arXiv:1611.09477 [stat.AP]. This is where you can find out what vtreat does, decide if it is appropriate for your problem, or even find a specification allowing the use of the techniques in non-R environments (such as Python/Pandas/scikit-learn, Spark, and many others).

We have submitted this article for formal publication, so it is our intent you can cite this article (as it stands) in scientific work as a pre-print, and later cite it from a formally refereed source.

Or alternately, below is the tl;dr (“too long; didn’t read”) form. Continue reading Data Preparation, Long Form and tl;dr Form

Posted on Categories Exciting Techniques, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, StatisticsTags , , , , ,

vtreat data cleaning and preparation article now available on arXiv

Nina Zumel and I are happy to announce a formal article discussing data preparation and cleaning using the vtreat methodology is now available from arXiv.org as citation arXiv:1611.09477 [stat.AP].

vtreat is an R data.frame processor/conditioner that prepares real-world data for predictive modeling in a statistically sound manner. It prepares variables so that data has fewer exceptional cases, making it easier to safely use models in production. Common problems vtreat defends against include: infinity, NA, too many categorical levels, rare categorical levels, and new categorical levels (levels seen during application, but not during training). vtreat::prepare should be your first choice for real world data preparation and cleaning.

We hope this article will make getting started with vtreat much easier. We also hope this helps with citing the use of vtreat in scientific publications. Continue reading vtreat data cleaning and preparation article now available on arXiv

Posted on Categories Coding, data science, math programming, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, StatisticsTags , , , , , , , , 3 Comments on Vtreat: designing a package for variable treatment

Vtreat: designing a package for variable treatment

When you apply machine learning algorithms on a regular basis, on a wide variety of data sets, you find that certain data issues come up again and again:

  • Missing values (NA or blanks)
  • Problematic numerical values (Inf, NaN, sentinel values like 999999999 or -1)
  • Valid categorical levels that don’t appear in the training data (especially when there are rare levels, or a large number of levels)
  • Invalid values

Of course, you should examine the data to understand the nature of the data issues: are the missing values missing at random, or are they systematic? What are the valid ranges for the numerical data? Are there sentinel values, what are they, and what do they mean? What are the valid values for text fields? Do we know all the valid values for a categorical variable, and are there any missing? Is there any principled way to roll up category levels? In the end though, the steps you take to deal with these issues will often be the same from data set to data set, so having a package of ready-to-go functions for data treatment is useful. In this article, we will discuss some of our usual data treatment procedures, and describe a prototype R package that implements them.

Continue reading Vtreat: designing a package for variable treatment