Posts Tagged ‘Data Mining’

The gap between data mining and predictive models

February 20th, 2014 3 comments

The Facebook data science blog shared some fun data explorations this Valentine’s Day in Carlos Greg Diuk’s “The Formation of Love”. They are rightly receiving positive interest in and positive reviews of their work (for example Robinson Meyer’s Atlantic article). The finding is also a great opportunity to discuss the gap between cool data mining results and usable predictive models. Data mining results like this (and the infamous “Beer and Diapers story”) face an expectation that one is immediately ready to implement something like what is claimed in: “Target Figured Out A Teen Girl Was Pregnant Before Her Father Did” once an association is plotted.

Producing a revenue improving predictive model is much harder than mining an interesting association. And this is what we will discuss here. Read more…

Data Science, Machine Learning, and Statistics: what is in a name?

April 19th, 2013 4 comments

A fair complaint when seeing yet another “data science” article is to say: “this is just medical statistics” or “this is already part of bioinformatics.” We certainly label many articles as “data science” on this blog. Probably the complaint is slightly cleaner if phrased as “this is already known statistics.” But the essence of the complaint is a feeling of claiming novelty in putting old wine in new bottles. Rob Tibshirani nailed this type of distinction in is famous machine learning versus statistics glossary.

I’ve written about statistics v.s. machine learning , but I would like to explain why we (the authors of this blog) often use the term data science. Nina Zumel explained being a data scientist very well, I am going to take a swipe at explaining data science.

We (the authors on this blog) label many of our articles as being about data science because we want to emphasize that the various techniques we write about are only meaningful when considered parts of a larger end to end process. The process we are interested in is the deployment of useful data driven models into production. The important components are learning the true business needs (often by extensive partnership with customers), enabling the collection of data, managing data, applying modeling techniques and applying statistics criticisms. The pre-existing term I have found that is closest to describing this whole project system is data science, so that is the term I use. I tend to use it a lot, because while I love the tools and techniques our true loyalty is to the whole process (and I want to emphasize this to our readers).

The phrase “data science” as in use it today is a fairly new term (made popular by William S. Cleveland, DJ Patil, and Jeff Hammerbacher). I myself worked in a “computational sciences” group in the mid 1990′s (this group emphasized simulation based modeling of small molecules and their biological interactions, the naming was an attempt to emphasize computation over computers). So for me “data science” seems like a good term when your work is driven by data (versus driven from computer simulations). For some people data science is considered a new calling and for others it is a faddish misrepresentation of work that has already been done. I think there are enough substantial differences in approach between traditional statistics, machine learning, data mining, predictive analytics, and data science to justify at least this much nomenclature. In this article I will try to describe (but not fully defend) my opinion. Read more…

Your Data is Never the Right Shape

July 31st, 2011 2 comments

One of the recurring frustrations in data analytics is that your data is never in the right shape. Worst case: you are not aware of this and every step you attempt is more expensive, less reliable and less informative than you would want. Best case: you notice this and have the tools to reshape your data.

There is no final “right shape.” In fact even your data is never right. You will always be called to re-do your analysis (new variables, new data, corrections) so you should always understand you are on your “penultimate analysis” (always one more to come). This is why we insist on using general methods and scripted techniques, as these methods are much much easier to reliably reapply on new data than GUI/WYSWYG techniques.

In this article we will work a small example and call out some R tools that make reshaping your data much easier. The idea is to think in terms of “relational algebra” (like SQL) and transform your data towards your tools (and not to attempt to adapt your tools towards the data in an ad-hoc manner). Read more…

A Personal Perspective on Machine Learning

October 31st, 2010 7 comments

Having a bit of history as both a user of machine learning and a researcher in the field I feel I have developed a useful perspective on the various trends, flavors and nuances in machine learning and artificial intelligence. I thought I would take a moment to outline a bit of it here and demonstrate how what we call artificial intelligence is becoming more statistical in nature. Read more…

A Demonstration of Data Mining

August 19th, 2009 2 comments

REPOST (now in HTML in addition to the original PDF).

This paper demonstrates and explains some of the basic techniques used in data mining. It also serves as an example of some of the kinds of analyses and projects Win Vector LLC engages in. Read more…