Posted on Categories Applications, Opinion, Pragmatic Machine Learning, Statistics, TutorialsTags , , , , , , , 6 Comments on My Favorite Graphs

My Favorite Graphs

The important criterion for a graph is not simply how fast we can see a result; rather it is whether through the use of the graph we can see something that would have been harder to see otherwise or that could not have been seen at all.

— William Cleveland, The Elements of Graphing Data, Chapter 2

In this article, I will discuss some graphs that I find extremely useful in my day-to-day work as a data scientist. While all of them are helpful (to me) for statistical visualization during the analysis process, not all of them will necessarily be useful for presentation of final results, especially to non-technical audiences.

I tend to follow Cleveland’s philosophy, quoted above; these graphs show me — and hopefully you — aspects of data and models that I might not otherwise see. Some of them, however, are non-standard, and tend to require explanation. My purpose here is to share with our readers some ideas for graphical analysis that are either useful to you directly, or will give you some ideas of your own.

Continue reading My Favorite Graphs

Posted on Categories Opinion, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , , , ,

The cranky guide to trying R packages

This is a tutorial on how to try out a new package in R. The summary is: expect errors, search out errors and don’t start with the built in examples or real data.

Suppose you want to try out a novel statistical technique? A good fraction of the time R is your best bet for a first trial. Take as an example general additive models (“Generalized Additive Models,” Trevor J Hastie, Robert Tibshirani, Statistical Science (1986) vol. 1 (3) pp. 297-318); R has a package named “gam” written by Trevor Hastie himself. But, like most R packages, trying the package from the supplied documentation brings in unfamiliar data and concerns. It is best to start small and quickly test if the package itself is suitable to your needs. We give a quick outline of how to learn such a package and quickly find out if the package is for you.

Continue reading The cranky guide to trying R packages