Posted on Categories Administrativia, Opinion, Practical Data Science, Pragmatic Data Science, Pragmatic Machine LearningTags , , , , , Leave a comment on New Year’s Resolution 2020: Work on more R Data Science Projects

New Year’s Resolution 2020: Work on more R Data Science Projects

We had such a positive reception to our last Introduction to Data Science promotion, that we are going to try and make the course available to more people by lowering the base-price to $29.99. We are also creating a 1 month promotional price of $20.99. To get a permanent subscription to the course for less than $21 just visit this link https://www.udemy.com/course/introduction-to-data-science/ and use the discount code ITDS21 any time in January of 2020.

Combine this with the new second edition of Practical Data Science with R, and you have a great study set to succeed at substantial statistical modeling and analytics tasks using the R programming language.


PDSwR2Lego

(Note: Lego mini-fig not included!)

Posted on Categories Administrativia, data science, StatisticsTags , , Leave a comment on Introduction to Data Science in R, Free for 3 days

Introduction to Data Science in R, Free for 3 days

To celebrate the new year and the recent release of Practical Data Science with R 2nd Edition, we are offering a free coupon for our video course “Introduction to Data Science.”

The following URL and code should get you permanent free access to the video course, if used between now and January 1st 2020:

https://www.udemy.com/course/introduction-to-data-science/ code: PDSWR2

Posted on Categories Exciting Techniques, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , , , , , 1 Comment on PyData Los Angeles 2019 talk: Preparing Messy Real World Data for Supervised Machine Learning

PyData Los Angeles 2019 talk: Preparing Messy Real World Data for Supervised Machine Learning

Video of our PyData Los Angeles 2019 talk Preparing Messy Real World Data for Supervised Machine Learning is now available. In this talk describe how to use vtreat, a package available in R and in Python, to correctly re-code real world data for supervised machine learning tasks.

Please check it out.

(Slides are also here.)

Posted on Categories Administrativia, data science, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, StatisticsTags , , , Leave a comment on Slides for PyData LA 2019 vtreat Talk

Slides for PyData LA 2019 vtreat Talk

Slides for PyData LA 2019 vtreat Talk are here!

Posted on Categories Administrativia, data science, Practical Data Science, StatisticsTags , , , , 7 Comments on Practical Data Science with R, 2nd Edition, IS OUT!!!!!!!

Practical Data Science with R, 2nd Edition, IS OUT!!!!!!!

Practical Data Science with R, 2nd Edition author Dr. Nina Zumel, with a fresh author’s copy of her book!

IMG 3384

Posted on Categories Administrativia, data science, Practical Data Science, Pragmatic Data Science, Pragmatic Machine LearningTags , , ,

vtreat Cross Validation

Nina Zumel finished new documentation on how vtreat‘s cross validation works, which I want to share here.

vtreat is a system that makes data preparation for machine learning a “one-liner” (available in R or available in Python). We have a set of starting off points here. These documents describe what vtreat does for you, you just find the one that matches your task and you should have a good start for solving data science problems in R or in Python.

The latest documentation is a bit about how vtreat works, and how to control some of the details of the work it is doing for you.

The new documentation is:

Please give one of the examples a try, and consider adding vtreat to your data science workflow.

Posted on Categories Administrativia, Opinion, Practical Data Science, StatisticsTags , , 2 Comments on Practical Data Science with R update

Practical Data Science with R update

Just got the following note from a new reader:

Thank you for writing Practical Data Science with R. It’s challenging for me, but I am learning a lot by following your steps and entering the commands.

Wow, this is exactly what Nina Zumel and I hoped for. We wish we could make everything easy, but an appropriate amount of challenge is required for significant learning and accomplishment.

Of course we try to avoid inessential problems. All of the code examples from the book can be found here (and all the data sets here).

The second edition is coming out very soon. Please check it out.

Posted on Categories Pragmatic Data Science, Pragmatic Machine Learning, TutorialsTags , , , , ,

What is vtreat?

vtreat is a DataFrame processor/conditioner that prepares real-world data for supervised machine learning or predictive modeling in a statistically sound manner.

vtreat takes an input DataFrame that has a specified column called “the outcome variable” (or “y”) that is the quantity to be predicted (and must not have missing values). Other input columns are possible explanatory variables (typically numeric or categorical/string-valued, these columns may have missing values) that the user later wants to use to predict “y”. In practice such an input DataFrame may not be immediately suitable for machine learning procedures that often expect only numeric explanatory variables, and may not tolerate missing values.

To solve this, vtreat builds a transformed DataFrame where all explanatory variable columns have been transformed into a number of numeric explanatory variable columns, without missing values. The vtreat implementation produces derived numeric columns that capture most of the information relating the explanatory columns to the specified “y” or dependent/outcome column through a number of numeric transforms (indicator variables, impact codes, prevalence codes, and more). This transformed DataFrame is suitable for a wide range of supervised learning methods from linear regression, through gradient boosted machines.

The idea is: you can take a DataFrame of messy real world data and easily, faithfully, reliably, and repeatably prepare it for machine learning using documented methods using vtreat. Incorporating vtreat into your machine learning workflow lets you quickly work with very diverse structured data.

Worked examples can be found here.

For more detail please see here: arXiv:1611.09477 stat.AP (the documentation describes the R version, however all of the examples can be found worked in Python here).

vtreat is available as a Python/Pandas package, and also as an R package.

(logo: Julie Mount, source: “The Harvest” by Boris Kustodiev 1914)

Some operational examples can be found here.

Posted on Categories Administrativia, Pragmatic Data ScienceTags , , , ,

Speaking at BARUG

We will be speaking at the Tuesday, September 3, 2019 BARUG. If you are in the Bay Area, please come see us.

Nina Zumel & John Mount
Practical Data Science with R

Practical Data Science with R (Zumel and Mount) was one of the first, and most widely-read books on the practice of doing Data Science using R. We have been working hard on an improved and revised 2nd edition of our book (coming out this Fall). The book reflects more experience with data science, teaching, and with R itself. We will talk about what direction we think the R community has been taking, how this affected the book, and what is new in the upcoming edition.

Posted on Categories data science, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , ,

Modeling multi-category Outcomes With vtreat

vtreat is a powerful R package for preparing messy real-world data for machine learning. We have further extended the package with a number of features including rquery/rqdatatable integration (allowing vtreat application at scale on Apache Spark or data.table!).

In addition vtreat and can now effectively prepare data for multi-class classification or multinomial modeling.

Continue reading Modeling multi-category Outcomes With vtreat