One of the shortcomings of regression (both linear and logistic) is that it doesn’t handle categorical variables with a very large number of possible values (for example, postal codes). You can get around this, of course, by going to another modeling technique, such as Naive Bayes; however, you lose some of the advantages of regression — namely, the model’s explicit estimates of variables’ explanatory value, and explicit insight into and control of variable to variable dependence.

Here we discuss one modeling trick that allows us to keep categorical variables with a large number of values, and at the same time retain much of logistic regression’s power.

Continue reading Modeling Trick: Impact Coding of Categorical Variables with Many Levels →

A primary problem data scientists face again and again is: how to properly adapt or treat variables so they are best possible components of a regression. Some analysts at this point delegate control to a shape choosing system like neural nets. I feel such a choice gives up far too much statistical rigor, transparency and control without real benefit in exchange. There are other, better, ways to solve the reshaping problem. A good rigorous way to treat variables are to try to find stabilizing transforms, introduce splines (parametric or non-parametric) or use generalized additive models. A practical or pragmatic approach we advise to get some of the piecewise reshaping power of splines or generalized additive models is: a modeling trick we call “masked variables.” This article works a quick example using masked variables. Continue reading Modeling Trick: Masked Variables →

Much of the data that the analyst uses exhibits extraordinary range. For example: incomes, company sizes, popularity of books and any “winner takes all process”; (see: Living in A Lognormal World). Tukey recommended the logarithm as an important “stabilizing transform” (a transform that brings data into a more usable form prior to generating exploratory statistics, analysis or modeling). One benefit of such transforms is: data that is normal (or Gaussian) meets more of the stated expectations of common modeling methods like least squares linear regression. So data from distributions like the lognormal is well served by a `log()`

transformation (that transforms the data closer to Gaussian) prior to analysis. However, not all data is appropriate for a log-transform (such as data with zero or negative values). We discuss a simple transform that we call a signed pseudo logarithm that is particularly appropriate to signed wide-range data (such as profit and loss). Continue reading Modeling Trick: the Signed Pseudo Logarithm →

## The Applied Theorist's Point of View