Posted on Categories data science, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , , , , , , , 3 Comments on A Theory of Nested Cross Simulation

A Theory of Nested Cross Simulation

[Reader’s Note. Some of our articles are applied and some of our articles are more theoretical. The following article is more theoretical, and requires fairly formal notation to even work through. However, it should be of interest as it touches on some of the fine points of cross-validation that are quite hard to perceive or discuss without the notational framework. We thought about including some “simplifying explanatory diagrams” but so many entities are being introduced and manipulated by the processes we are describing we found equation notation to be in fact cleaner than the diagrams we attempted and rejected.]

Please consider either of the following common predictive modeling tasks:

  • Picking hyper-parameters, fitting a model, and then evaluating the model.
  • Variable preparation/pruning, fitting a model, and then evaluating the model.

In each case you are building a pipeline where “y-aware” (or outcome aware) choices and transformations made at each stage affect later stages. This can introduce undesirable nested model bias and over-fitting.

Our current standard advice to avoid nested model bias is either:

  • Split your data into 3 or more disjoint pieces, such as separate variable preparation/pruning, model fitting, and model evaluation.
  • Reserve a test-set for evaluation and use “simulated out of sample data” or “cross-frame”/“cross simulation” techniques to simulate dividing data among the first two model construction stages.

The first practice is simple and computationally efficient, but statistically inefficient. This may not matter if you have a lot of data, as in “big data”. The second procedure is more statistically efficient, but is also more complicated and has some computational cost. For convenience the cross simulation method is supplied as a ready to go procedure in our R data cleaning and preparation package vtreat.

What would it look like if we insisted on using cross simulation or simulated out of sample techniques for all three (or more) stages? Please read on to find out.


Hyperbole and a Half copyright Allie Brosh (use allowed in some situations with attribution)

Edit: we are going to be writing on a situation of some biases that do leak into the cross-frame “new data simulation.” So think of cross-frames as bias (some small amount is introduced) / variance (reduced be appearing to have a full sized data set at all stages) trade-off.

Posted on Categories Administrativia, data science, Statistics, TutorialsTags , 3 Comments on Upcoming Talks

Upcoming Talks

I (Nina Zumel) will be speaking at the Women who Code Silicon Valley meetup on Thursday, October 27.

The talk is called Improving Prediction using Nested Models and Simulated Out-of-Sample Data.

In this talk I will discuss nested predictive models. These are models that predict an outcome or dependent variable (called y) using additional submodels that have also been built with knowledge of y. Practical applications of nested models include “the wisdom of crowds”, prediction markets, variable re-encoding, ensemble learning, stacked learning, and superlearners.

Nested models can improve prediction performance relative to single models, but they introduce a number of undesirable biases and operational issues, and when they are improperly used, are statistically unsound. However modern practitioners have made effective, correct use of these techniques. In my talk I will give concrete examples of nested models, how they can fail, and how to fix failures. The solutions we will discuss include advanced data partitioning, simulated out-of-sample data, and ideas from differential privacy. The theme of the talk is that with proper techniques, these powerful methods can be safely used.

John Mount and I will also be giving a workshop called A Unified View of Model Evaluation at ODSC West 2016 on November 4 (the premium workshop sessions), and November 5 (the general workshop sessions).

We will present a unified framework for predictive model construction and evaluation. Using this perspective we will work through crucial issues from classical statistical methodology, large data treatment, variable selection, ensemble methods, and all the way through stacking/super-learning. We will present R code demonstrating principled techniques for preparing data, scoring models, estimating model reliability, and producing decisive visualizations. In this workshop we will share example data, methods, graphics, and code.

I’m looking forward to these talks, and I hope some of you will be able to attend.