Posted on Categories Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Statistics, TutorialsTags , , , , , ,

Encoding categorical variables: one-hot and beyond

(or: how to correctly use xgboost from R)

R has "one-hot" encoding hidden in most of its modeling paths. Asking an R user where one-hot encoding is used is like asking a fish where there is water; they can’t point to it as it is everywhere.

For example we can see evidence of one-hot encoding in the variable names chosen by a linear regression:

dTrain <-  data.frame(x= c('a','b','b', 'c'),
                      y= c(1, 2, 1, 2))
summary(lm(y~x, data= dTrain))
## 
## Call:
## lm(formula = y ~ x, data = dTrain)
## 
## Residuals:
##          1          2          3          4 
## -2.914e-16  5.000e-01 -5.000e-01  2.637e-16 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)
## (Intercept)   1.0000     0.7071   1.414    0.392
## xb            0.5000     0.8660   0.577    0.667
## xc            1.0000     1.0000   1.000    0.500
## 
## Residual standard error: 0.7071 on 1 degrees of freedom
## Multiple R-squared:    0.5,  Adjusted R-squared:   -0.5 
## F-statistic:   0.5 on 2 and 1 DF,  p-value: 0.7071

Continue reading Encoding categorical variables: one-hot and beyond