Using correlation to track model performance is “a mistake that nobody would ever make” combined with a vague “what would be wrong if I did do that” feeling. I hope after reading this feel a least a small urge to double check your work and presentations to make sure you have not reported correlation where R-squared, likelihood or root mean square error (RMSE) would have been more appropriate.

It is tempting (but wrong) to use correlation to track the performance of model predictions. The temptation arises because we often (correctly) use correlation to evaluate possible model inputs. And the correlation function is often a convenient built-in function. Continue reading Don’t use correlation to track prediction performance