Posted on Categories Coding, data science, Opinion, Programming, Statistics, TutorialsTags , , , , 13 Comments on Tutorial: Using seplyr to Program Over dplyr

Tutorial: Using seplyr to Program Over dplyr

seplyr is an R package that makes it easy to program over dplyr 0.7.*.

To illustrate this we will work an example.

Continue reading Tutorial: Using seplyr to Program Over dplyr

Posted on Categories Administrativia, Exciting Techniques, Statistics, TutorialsTags , , 1 Comment on seplyr update

seplyr update

The development version of my new R package seplyr is performing in practical applications with dplyr 0.7.* much better than even I (the seplyr package author) expected.

I think I have hit a very good set of trade-offs, and I have now spent significant time creating documentation and examples.

I wish there had been such a package weeks ago, and that I had started using this approach in my own client work at that time. If you are already a dplyr user I strongly suggest trying seplyr in your own analysis projects.

Please see here for details.

Posted on Categories data science, Opinion, Programming, Statistics, TutorialsTags , , , , 12 Comments on dplyr 0.7 Made Simpler

dplyr 0.7 Made Simpler

I have been writing a lot (too much) on the R topics dplyr/rlang/tidyeval lately. The reason is: major changes were recently announced. If you are going to use dplyr well and correctly going forward you may need to understand some of the new issues (if you don’t use dplyr you can safely skip all of this). I am trying to work out (publicly) how to best incorporate the new methods into:

  • real world analyses,
  • reusable packages,
  • and teaching materials.

I think some of the apparent discomfort on my part comes from my feeling that dplyr never really gave standard evaluation (SE) a fair chance. In my opinion: dplyr is based strongly on non-standard evaluation (NSE, originally through lazyeval and now through rlang/tidyeval) more by the taste and choice than by actual analyst benefit or need. dplyr isn’t my package, so it isn’t my choice to make; but I can still have an informed opinion, which I will discuss below.

Continue reading dplyr 0.7 Made Simpler