It occurred to us recently that we don’t have any articles about Bayesian approaches to statistics here. I’m not going to get into the “Bayesian versus Frequentist” war; in my opinion, which style of approach to use is less about philosophy, and more about figuring out the best way to answer a question. Once you have the right question, then the right approach will naturally suggest itself to you. It could be a frequentist approach, it could be a bayesian one, it could be both — even while solving the same problem.

Let’s take the example that Bayesians love to hate: significance testing, especially in clinical trial style experiments. Clinical trial experiments are designed to answer questions of the form “Does treatment X have a discernible effect on condition Y, on average?” To be specific, let’s use the question “Does drugX reduce hypertension, on average?” Assuming that your experiment does show a positive effect, the statistical significance tests that you run should check for the sorts of problems that John discussed in our previous article, Worry about correctness and repeatability, not p-values: What are the chances that an ineffective drug could produce the results that I saw? How likely is it that another researcher could replicate my results with the same size trial?

We can argue about whether or not the question we are answering is the *correct* question — but given that it *is* the question, the procedure to answer it and to verify the statistical validity of the results is perfectly appropriate.

So what is the correct question? From your family doctor’s viewpoint, a clinical trial answers the question “If I prescribe drugX to all my hypertensive patients, will their blood pressure improve, on average?” That isn’t the question (hopefully) that your doctor actually asks, though possibly your insurance company does. Your doctor should be asking “If I prescribe drugX to *this patient*, the one sitting in my examination room, will the patient’s blood pressure improve?” There is only one patient, so there is no such thing as “on average.”

If your doctor has a masters degree in statistics, the question might be phrased as “If I prescribe drugX to this patient, what is the posterior probability that the patient’s blood pressure will improve?” And that’s a bayesian question. Continue reading Bayesian and Frequentist Approaches: Ask the Right Question