Posted on Categories Coding, data science, math programming, Statistics, TutorialsTags , , , , , , , , Leave a comment on Y-Conditionally Regularized Neural Nets

Y-Conditionally Regularized Neural Nets

Win Vector LLC’s Dr. Nina Zumel has had great success applying y-aware methods to machine learning problems, and working out the detailed cross-validation methods needed to make y-aware procedures safe. I thought I would try our hand at y-aware neural net or deep learning methods here.

Continue reading Y-Conditionally Regularized Neural Nets

Posted on Categories Coding, Computer Science, data science, Expository Writing, math programming, Pragmatic Machine Learning, StatisticsTags , , , , , , , , , 4 Comments on The Geometry of Classifiers

The Geometry of Classifiers

As John mentioned in his last post, we have been quite interested in the recent study by Fernandez-Delgado,, “Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?” (the “DWN study” for short), which evaluated 179 popular implementations of common classification algorithms over 120 or so data sets, mostly from the UCI Machine Learning Repository. For fun, we decided to do a follow-up study, using their data and several classifier implementations from scikit-learn, the Python machine learning library. We were interested not just in classifier accuracy, but also in seeing if there is a “geometry” of classifiers: which classifiers produce predictions patterns that look similar to each other, and which classifiers produce predictions that are quite different? To examine these questions, we put together a Shiny app to interactively explore how the relative behavior of classifiers changes for different types of data sets.

Continue reading The Geometry of Classifiers