Posted on

Introduction

In teaching thinking in terms of coordinatized data we find the hardest operations to teach are joins and pivot.

One thing we commented on is that moving data values into columns, or into a “thin” or entity/attribute/value form (often called “un-pivoting”, “stacking”, “melting” or “gathering“) is easy to explain, as the operation is a function that takes a single row and builds groups of new rows in an obvious manner. We commented that the inverse operation of moving data into rows, or the “widening” operation (often called “pivoting”, “unstacking”, “casting”, or “spreading”) is harder to explain as it takes a specific group of columns and maps them back to a single row. However, if we take extra care and factor the pivot operation into its essential operations we find pivoting can be usefully conceptualized as a simple single row to single row mapping followed by a grouped aggregation.

Please read on for our thoughts on teaching pivoting data. Continue reading Teaching pivot / un-pivot

Posted on Categories art, Expository Writing, Opinion1 Comment on Visualizing relational joins

Visualizing relational joins

I want to discuss a nice series of figures used to teach relational join semantics in R for Data Science by Garrett Grolemund and Hadley Wickham, O’Reilly 2016. Below is an example from their book illustrating an inner join:

Please read on for my discussion of this diagram and teaching joins. Continue reading Visualizing relational joins

Posted on 1 Comment on Coordinatized Data: A Fluid Data Specification

Introduction

It has been our experience when teaching the data wrangling part of data science that students often have difficulty understanding the conversion to and from row-oriented and column-oriented data formats (what is commonly called pivoting and un-pivoting).

Real trust and understanding of this concept doesn’t fully form until one realizes that rows and columns are inessential implementation details when reasoning about your data. Many algorithms are sensitive to how data is arranged in rows and columns, so there is a need to convert between representations. However, confusing representation with semantics slows down understanding.

In this article we will try to separate representation from semantics. We will advocate for thinking in terms of coordinatized data, and demonstrate advanced data wrangling in `R`.

Posted on 2 Comments on Adding polished significance summaries to papers using R

Adding polished significance summaries to papers using R

When we teach “`R` for statistics” to groups of scientists (who tend to be quite well informed in statistics, and just need a bit of help with R) we take the time to re-work some tests of model quality with the appropriate significance tests. We organize the lesson in terms of a larger and more detailed version of the following list:

• To test the quality of a numeric model to numeric outcome: F-test (as in linear regression).
• To test the quality of a numeric model to a categorical outcome: χ2 or “Chi-squared” test (as in logistic regression).
• To test the association of a categorical predictor to a categorical outcome: many tests including Fisher’s exact test and Barnard’s test.
• To test the quality of a categorical predictor to a numeric outcome: t-Test, ANOVA, and Tukey’s “honest significant difference” test.

The above tests are all in terms of checking model results, so we don’t allow re-scaling of the predictor as part of the test (as we would have in a Pearson correlation test, or an area under the curve test). There are, of course, many alternatives such as Wald’s test- but we try to start with a set of tests that are standard, well known, and well reported by `R`. An odd exception has always been the χ2 test, which we will write a bit about in this note. Continue reading Adding polished significance summaries to papers using R

Posted on

On Writing Our Book: A Little Philosophy

We recently got this question from a subscriber to our book:

… will you in any way describe what subject areas, backgrounds, courses etc. would help a non data scientist prepare themselves to at least understand at a deeper level why they techniques you will discuss work…and also understand the boundary conditions and limits of the models etc….. ?

[…] I would love to understand what I could review first to better prepare to extract the most from it.

It’s a good question, and it raises an interesting philosophical point. To read our book, it will of course help to know a little bit about statistics and probability, and to be familiar with R and/or with programming in general. But we do plan on introducing the necessary concepts as needed into our discussion, so we don’t consider these subjects to be “pre-requisites” in a strict sense.

Part of our reason for writing this book is to make reading about statistics/probability and machine learning easier. That is, we hope that if you read our book, other reference books and textbooks will make more sense, because we have given you a concrete context for the abstract concepts that the reference books cover.

So, my advice to our subscriber was to keep his references handy as he read our book, rather than trying to brush up on all the “pre-requisite” subjects first.

Of course, everyone learns differently, and we’d like to know what other readers think. What (if anything) would you consider “pre-requisites” to our book? What would you consider good companion references?

If you are subscribed to our book, please join the conversation, or post other comments on the Practical Data Science with R author’s forum. Your input will help us write a better book; we look forward to hearing from you.

Posted on 3 Comments on On Writing Technical Articles for the Nonspecialist

On Writing Technical Articles for the Nonspecialist

This was originally posted at ninazumel.com. I’m re-blogging it here.

Photo: John Mount

I came across a post from Emily Willingham the other day: “Is a PhD required for Good Science Writing?”. As a science writer with a science PhD, her answer is: is it not required, and it can often be an impediment. I saw a similar sentiment echoed once by Lee Gutkind, the founder and editor of the journal Creative Nonfiction. I don’t remember exactly what he wrote, but it was something to the effect that scientists are exactly the wrong people to produce literary, accessible writing about matters scientific.

I don’t agree with Gutkind’s point, but I can see where it comes from. Academic writing has a reputation for being deliberately obscure and prolix, jargonistic. Very few people read journal papers for fun (well, except me, but I’m weird). On the other hand, a science writer with a PhD has been trained for critical thinking, and should have a nose for bullpucky, even outside their field of expertise. This can come in handy when writing about medical research or controversial new scientific findings. Any scientist — any person — is going to hype up their work. It’s the writer’s job to see through that hype.

I’m not a science writer in the sense that Dr. Willingham is. I write statistics and data science articles (blog posts) for non-statisticians. Generally, the audience that I write for is professionally interested in the topic, but aren’t necessarily experts at it. And as a writer, many of my concerns are the same as those of a popular science writer.

I want to cut through the bullpucky. I want you, the reader, to come away understanding something you thought you didn’t — or even couldn’t — understand. I want you, the analyst or data science practitioner, to understand your tools well enough to innovate, not just use them blindly. And if I’m writing about one of my innovations, I want you to understand it well enough to possibly use it, not just be awed at my supposed brilliance.

I don’t do these things perfectly; but in the process of trying, and of reading other writers with similar objectives, I’ve figured out a few things.