Posted on Categories Opinion, Statistics, TutorialsTags , , , 2 Comments on dplyr in Context

dplyr in Context

Introduction

Beginning R users often come to the false impression that the popular packages dplyr and tidyr are both all of R and sui generis inventions (in that they might be unprecedented and there might no other reasonable way to get the same effects in R). These packages and their conventions are high-value, but they are results of evolution and implement a style of programming that has been available in R for some time. They evolved in a context, and did not burst on the scene fully armored with spear in hand.

Continue reading dplyr in Context

Posted on Categories data science, Expository Writing, Opinion, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, Programming, Statistics, TutorialsTags , , , , , , , 1 Comment on Coordinatized Data: A Fluid Data Specification

Coordinatized Data: A Fluid Data Specification

Authors: John Mount and Nina Zumel.

Introduction

It has been our experience when teaching the data wrangling part of data science that students often have difficulty understanding the conversion to and from row-oriented and column-oriented data formats (what is commonly called pivoting and un-pivoting).

Real trust and understanding of this concept doesn’t fully form until one realizes that rows and columns are inessential implementation details when reasoning about your data. Many algorithms are sensitive to how data is arranged in rows and columns, so there is a need to convert between representations. However, confusing representation with semantics slows down understanding.

In this article we will try to separate representation from semantics. We will advocate for thinking in terms of coordinatized data, and demonstrate advanced data wrangling in R.

Continue reading Coordinatized Data: A Fluid Data Specification