Posted on Categories Coding, Statistics, TutorialsTags , , , , 6 Comments on R Tip: Force Named Arguments

R Tip: Force Named Arguments

R tip: force the use of named arguments when designing function signatures.

R’s named function argument binding is a great aid in writing correct programs. It is a good idea, if practical, to force optional arguments to only be usable by name. To do this declare the additional arguments after “...” and enforce that none got lost in the “... trap” by using a checker such as wrapr::stop_if_dot_args().


#' Increment x by inc.
#' @param x item to add to
#' @param ... not used for values, forces later arguments to bind by name
#' @param inc (optional) value to add
#' @return x+inc
#' @examples
#' f(7) # returns 8
f <- function(x, ..., inc = 1) {
   wrapr::stop_if_dot_args(substitute(list(...)), "f")
   x + inc

#> [1] 8

f(7, inc = 2)
#> [1] 9

f(7, q = mtcars)
#> Error: f unexpected arguments: q = mtcars

f(7, 2)
#> Error: f unexpected arguments: 2 

By R function evaluation rules: any unexpected/undeclared arguments are captured by the “...” argument. Then “wrapr::stop_if_dot_args()” inspects for such values and reports an error if there are such. The "f" string is returned as part of the error, I chose the name of the function as in this case. The “substitute(list(…))” part is R’s way of making the contents of “…” available for inspection.

You can also use the technique on required arguments. wrapr::stop_if_dot_args() is a simple low-dependency helper function intended to make writing code such as the above easier. This is under the rubric that hidden errors are worse than thrown exceptions. It is best to find and signal problems early, and near the cause.

The idea is that you should not expect a user to remember the positions of more than 1 to 3 arguments, the rest should only be referable by name. Do not make your users count along large sequences of arguments, the human brain may have special cases for small sequences.

If you have a procedure with 10 parameters, you probably missed some.

Alan Perlis, “Epigrams on Programming”, ACM SIGPLAN Notices 17 (9), September 1982, pp. 7–13.

Note that the “substitute(list(...))” part is the R idiom for capturing the unevaluated contents of “...“, I felt it best to use standard R as much a possible in favor of introducing any additional magic invocations.

Posted on Categories Coding, StatisticsTags , , , , 1 Comment on R Tip: Use qc() For Fast Legible Quoting

R Tip: Use qc() For Fast Legible Quoting

Here is an R tip. Need to quote a lot of names at once? Use qc().

This is particularly useful in selecting columns from data.frames:

library("wrapr")  # get qc() definition

head(mtcars[, qc(mpg, cyl, wt)])

#                    mpg cyl    wt
# Mazda RX4         21.0   6 2.620
# Mazda RX4 Wag     21.0   6 2.875
# Datsun 710        22.8   4 2.320
# Hornet 4 Drive    21.4   6 3.215
# Hornet Sportabout 18.7   8 3.440
# Valiant           18.1   6 3.460

Or even to install many packages at once:

install.packages(qc(vtreat, cdata, WVPlots))
# shorter than the alternative:
#  install.packages(c("vtreat", "cdata", "WVPlots"))
Posted on Categories Exciting Techniques, Programming, Statistics, TutorialsTags , , , , , 4 Comments on Supercharge your R code with wrapr

Supercharge your R code with wrapr

I would like to demonstrate some helpful wrapr R notation tools that really neaten up your R code.

1968 AMX blown and tubbed e

Img: Christopher Ziemnowicz.

Continue reading Supercharge your R code with wrapr

Posted on Categories data science, Programming, TutorialsTags , , 1 Comment on New wrapr R pipeline feature: wrapr_applicable

New wrapr R pipeline feature: wrapr_applicable

The R package wrapr now has a neat new feature: “wrapr_applicable”.


This feature allows objects to declare a surrogate function to stand in for the object in wrapr pipelines. It is a powerful technique and allowed us to quickly implement a convenient new ad hoc query mode for rquery.

A small effort in making a package “wrapr aware” appears to have a fairly large payoff.

Posted on Categories Programming, Statistics, TutorialsTags , , , , , , 2 Comments on RStudio Keyboard Shortcuts for Pipes

RStudio Keyboard Shortcuts for Pipes

I have just released some simple RStudio add-ins that are great for creating keyboard shortcuts when working with pipes in R.

You can install the add-ins from here (which also includes both installation instructions and use instructions/examples).

RStudio Logo Blue Gradient

Wraprs BizarroPipe Logo

Posted on Categories Coding, Opinion, Statistics, TutorialsTags , , , ,

Let X=X in R

Our article "Let’s Have Some Sympathy For The Part-time R User" includes two points:

  • Sometimes you have to write parameterized or re-usable code.
  • The methods for doing this should be easy and legible.

The first point feels abstract, until you find yourself wanting to re-use code on new projects. As for the second point: I feel the wrapr package is the easiest, safest, most consistent, and most legible way to achieve maintainable code re-use in R.

In this article we will show how wrapr makes code-rewriting even easier with its new let x=x automation.


Let X=X

Continue reading Let X=X in R

Posted on Categories Opinion, Programming, StatisticsTags , , , , , 10 Comments on Let’s Have Some Sympathy For The Part-time R User

Let’s Have Some Sympathy For The Part-time R User

When I started writing about methods for better "parametric programming" interfaces for dplyr for R dplyr users in December of 2016 I encountered three divisions in the audience:

  • dplyr users who had such a need, and wanted such extensions.
  • dplyr users who did not have such a need ("we always know the column names").
  • dplyr users who found the then-current fairly complex "underscore" and lazyeval system sufficient for the task.

Needing name substitution is a problem an advanced full-time R user can solve on their own. However a part-time R would greatly benefit from a simple, reliable, readable, documented, and comprehensible packaged solution. Continue reading Let’s Have Some Sympathy For The Part-time R User

Posted on Categories Administrativia, data science, Practical Data Science, Pragmatic Data Science, Pragmatic Machine Learning, StatisticsTags , , , , , , , 1 Comment on More documentation for Win-Vector R packages

More documentation for Win-Vector R packages

The Win-Vector public R packages now all have new pkgdown documentation sites! (And, a thank-you to Hadley Wickham for developing the pkgdown tool.)

Please check them out (hint: vtreat is our favorite).

NewImage Continue reading More documentation for Win-Vector R packages

Posted on Categories Opinion, Programming, StatisticsTags , , , , , 2 Comments on Using wrapr::let() with tidyeval

Using wrapr::let() with tidyeval

While going over some of the discussion related to my last post I came up with a really neat way to use wrapr::let() and rlang/tidyeval together.

Please read on to see the situation and example. Continue reading Using wrapr::let() with tidyeval